
Projet Blast
Rapport de projet

— Groupe Quadro —

Nicolas FROGER
Mathieu GUÉRIN

Pierre DE LA RUFFIE

17 mai 2019

1

Table des matières

1 Introduction 5

1.1 Présentation générale du jeu . 5

2 Rappel du cahier des charges 6

2.1 Modifications de groupe . 6

2.2 Mises à jour de la répartition des tâches 7

2.3 Mise à jour des fonctionnalités 7

3 Les fonctionnalités du jeu 8

3.1 Le vaisseau . 8

3.1.1 Contrôles . 8

3.1.2 Mouvements du joueur . 9

3.1.3 Mécaniques de tir . 10

3.1.4 Physique des projectiles 11

3.1.5 Améliorations . 12

3.1.6 Interactions entre entités 12

3.1.7 Collisions . 13

3.2 Les missions . 15

3.2.1 Mission de livraison . 15

3.2.2 Mission de destruction . 15

3.3 Interfaces . 16

3.3.1 La boussole . 16

3.3.2 HUD (Head-Up Display) 16

3.3.3 Le viseur . 17

3.3.4 Missions et améliorations 17

3.3.5 Menu principal . 18

2

3.4 Sauvegardes . 19

3.5 Monde et carte . 20

3.5.1 Génération d’astéroïdes 20

3.5.2 Skybox . 21

3.5.3 Map . 23

3.5.4 Les bâtiments . 24

3.6 Multijoueur . 27

3.6.1 Le multijoueur en jeu . 27

3.6.2 Intégration avec Discord Rich Presence 29

3.7 Les Sons . 30

4 Commentaire sur l’avancement 31

5 Le site web 32

5.1 Présentation du site . 32

5.2 Plan du site . 33

5.3 Informations techniques . 34

6 Téléchargement et Installation 35

6.1 Téléchargement . 35

6.2 Installation . 35

7 Structure du repository 36

7.1 Structure physique . 36

7.2 Notre projet sur Github . 38

8 Documentation et Informations 39

8.1 Documentation . 39

8.2 Librairies et Assets . 39

3

9 Expériences personnelles 40

9.1 Nicolas FROGER (chef du projet) 40

9.2 Mathieu GUÉRIN . 41

9.3 Pierre DE LA RUFFIE . 42

10 Conclusion 43

4

Projet Blast
Rapport de projet

EPITA
17 mai 2019

1 Introduction

Après un semestre entier de travail de groupe, le projet Blast touche enfin
à sa fin.

Malgré les difficultés rencontrées et une première partie de développement
compliqués, notamment au sujet de la formation du groupe, beaucoup de travail
a été effectué pour pouvoir atteindre ce stade final de notre jeu vidéo.

1.1 Présentation générale du jeu

Blast est un jeu de tir à la troisième personne dans l’espace. Le joueur
contrôle un vaisseau voyageant dans l’espace et doit effectuer plusieurs missions
qu’il peut choisir. Il en existe deux : la livraison et la destruction. Tout ses
aspects seront développés dans ce rapport.

Le projet Blast a été développé en C# 1 et en utilisant le moteur de jeu
Unity 2 (version 2018.3.5f). N’étant initialement pas familier avec ce moteur de
jeu, il nous a fallu un certain temps d’adaptation afin de comprendre ses méca-
niques et ses spécificités. Concernant la centralisation des données, nous avons
préféré utiliser Git et Github plutôt que Unity Collab, son analogue prévu pour
fonctionner uniquement avec Unity, puisque certains d’entre nous connaissaient
déjà cet outil, très populaire dans le domaine du développement, et qu’il offre
plus de possibilités que son alternative.

Avec le jeu est aussi fourni un site, hébergé grâce à GitHub 3, et contenant
tout d’abord un lien de téléchargement du jeu mais aussi quelques informations.

— Site : https://g00pix.github.io/ProjetBlast/
— Page des téléchargements : https://g00pix.github.io/ProjetBlast/

downloads

1. C# : https://fr.wikipedia.org/wiki/C_sharp
2. Unity : https://unity.com/
3. GitHub : https://github.com/

5

https://g00pix.github.io/ProjetBlast/
https://g00pix.github.io/ProjetBlast/downloads
https://g00pix.github.io/ProjetBlast/downloads
https://fr.wikipedia.org/wiki/C_sharp
https://unity.com/
https://github.com/

Projet Blast
Rapport de projet

EPITA
17 mai 2019

2 Rappel du cahier des charges

2.1 Modifications de groupe

Le groupe a subi de nombreuses modifications depuis sa création. Ci-dessous
est présenté l’historique de cette évolution (avec en gris les départs) :

— Groupe d’origine
— Nicolas FROGER
— Mathieu GUÉRIN
— Maëlle FERRARIN
— Adonis KHALIFE

— 1ère soutenance
— Nicolas FROGER
— Mathieu GUÉRIN
— Mattéo DEMICHELE

— 2nde soutenance
— Nicolas FROGER
— Mathieu GUÉRIN
— Pierre DE LA RUFFIE
— Clément PERICAT

La période entre la 1ère et la 2nde soutenance a été marquée par la fusion de
deux groupes avec deux projets différents :

— Blast, développé par le groupe Quadro :
— Nicolas FROGER
— Mathieu GUÉRIN

— Blitzkrieg, développé par le groupe Overlord :
— Pierre DE LA RUFFIE
— Clément PERICAT

Après concertation, le projet retenu, comme la première page du rapport le
laisse savoir, a été Blast.

Aujourd’hui, le groupe Quadro est constitué des 3 personnes suivantes :
— Nicolas FROGER (chef de projet)
— Mathieu GUÉRIN
— Pierre DE LA RUFFIE

6

Projet Blast
Rapport de projet

EPITA
17 mai 2019

2.2 Mises à jour de la répartition des tâches

Avant la première soutenance, la répartition des tâches a été un peu plus
difficile que prévue à cause des départs de membres et était donc un peu floue,
mais les bases du jeu ont néanmoins pu être commencées.

Suite à la fusion des deux groupes après la première soutenance, il a fallu
choisir lequel des deux projets allait être continué et lequel allait être laissé de
côté. Le projet Blast a été retenu et c’est donc le développement de celui-ci
qui est poursuivi. Il a donc été nécessaire au nouveau membre de s’approprier
le jeu et se mettre au courant de ce qui avait déjà été fait pour être en mesure
de commencer à ajouter des fonctionnalités.

L’arrivée de Pierre lors de cette fusion a nécessité une mise à jour de la
répartition des tâches. Celle-ci a été adaptée à ses compétences et n’a pas posé
de problèmes.

Chacun des membres s’est intégré au projet et s’est attribué des rôles en
rapport avec le développement de notre jeu vidéo :

— Nicolas : Développement multi-joueur, missions et upgrades.
— Mathieu : Développement objets, robot ennemis et gameplay.
— Pierre : Création et développement interface, audio et map.

2.3 Mise à jour des fonctionnalités

En ce qui concerne les fonctionnalités prévues par le cahier des charges, peu
de modifications ont été effectuées.
En effet, le seul changement concerne la section "Objets du jeu" qui a été renom-
mée en "Améliorations du vaisseau" pour mieux refléter l’évolution du projet.

7

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3 Les fonctionnalités du jeu

Chaque fonctionnalité du projet est détaillée ci-dessous dans leurs sections
respectives. Ces sections correspondent aux catégories de fonctionnalités que
nous avions mentionnées dans le cahier des charges. Pour chaque section, le déve-
loppement de chaque fonctionnalité, ainsi que tous les aspects qui la composent,
seront détaillés. Pour chaque fonctionnalité qui s’y prête, nous préciseront leur
fonctionnement et leurs enjeux techniques.

3.1 Le vaisseau

Le vaisseau est l’élément qui représente le joueur. Chaque vaisseau dispose
d’un certain nombre de fonctionnalités qui sont détaillées ci-dessous.

3.1.1 Contrôles

Le vaisseau est un objet dans l’espace que le joueur peut contrôler. Une
caméra y est virtuellement attachée, à la troisième personne, et permet au joueur
de se voir et ainsi de se déplacer dans le jeu.
Les mouvements de ce dernier ont été configurés dès le début du projet et
améliorés par la suite. Le joueur est ainsi capable de contrôler :

— L’accélération et les mouvements du vaisseau (avec Z Q S D)
— Le roulis du vaisseau (avec A E)
— La direction du vaisseau (avec les mouvements de souris)

Un boost est également disponible au joueur et lui permet de multiplier par 10
son accélération et sa vitesse maximale. Pour activer le boost, le joueur doit
maintenir Shift ⇑ pendant son déplacement.

L’accélération est d’ailleurs progressive : c’est à dire que le joueur mettra un
certain temps à atteindre une vitesse rapide, et encore plus pour atteindre sa
vitesse maximale. Cette vitesse maximale est de 19.6 m/s en mode normal, et
de 196 m/s en mode boost.

Le joueur est aussi capable de regarder ce qu’il se passe autour de lui sans
modifier la direction de son vaisseau : il s’agit du mode « caméra libre ». Pour
passer dans ce mode, il suffit au joueur d’appuyer sur le clic molette avant de
déplacer sa souris.

8

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.1.2 Mouvements du joueur

Les mouvements ont été compliqués à bien gérer. En effet, le jeu se déroule
dans l’espace, c’est-à-dire un environnement sans gravité, et donc sans notion
de haut et de bas. Cela représente une vraie problématique car il ne faut pas
que le joueur se perde.
Il faut aussi que les contrôles se fassent relativement au joueur et non au monde,
ce qui a posé beaucoup de problèmes au début car la caméra et le vaisseau ne
réagissaient pas de la manière souhaitée lorsque ce dernier était incliné et a
nécessité beaucoup de recherches pour les régler.

Les solutions ont cependant été assez simples, malgré que le tout ait été
résolu assez tardivement dans le développement du jeu. Pour garder l’exemple
de la caméra, nous utilisons la fonction Transform.LookAt() 4 pour que la ca-
méra regarde le vaisseau du joueur. Lorsque le joueur était incliné ou était
à l’envers, la caméra restait orientée de la même façon et les contrôles deve-
naient très confus. Nous avons appris par la suite que cette fonction dispose
d’un paramètre permettant de choisir le vecteur qui représente le haut, par dé-
faut fixé à Vector3.up 5, il a donc suffit d’utiliser le vecteur haut relatif au
joueur (player.transform.up) pour régler ce problème.

De plus, des effets de traînées ont été ajoutés à l’arrière du vaisseau, sur
ses réacteur, pour donner au joueur une réelle impression de mouvement, que le
vide de l’espace seul ne permet pas.
Des effets similaires ont été ajoutés aux projectiles pour leur donner aussi un ef-
fet de vitesse, mais aussi de puissance. Ces deux traînées utilisent les composants
Trail Emitters de Unity.

4. Transform.LookAt() :
https://docs.unity3d.com/ScriptReference/Transform.LookAt.html

5. Vector3.up : Correspond au vecteur (0, 1, 0).
Plus d’infos sur https://docs.unity3d.com/ScriptReference/Vector3-up.html

9

https://docs.unity3d.com/ScriptReference/Transform.LookAt.html
https://docs.unity3d.com/ScriptReference/Vector3-up.html

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.1.3 Mécaniques de tir

Des mécaniques de base pour le combat ont ensuite été ajoutées par Ma-
thieu. Un premier canon a été ajouté, puis un second, tous deux capables de
tirer sur demande des projectiles, à l’aide du clic gauche et droit pour, respec-
tivement, le canon gauche et droit. Ces projectiles tirés iront heurter les objets
qu’ils rencontreront, avant de disparaître à l’impact. Les collisions sont détectées
à l’aide de la méthode prédéfinie OnCollisionEnter() 6 et supprime le projec-
tile lorsqu’elle est appelée. Si aucune collision n’est détectée, le projectile est
supprimé au bout d’un certain temps (environ 5 secondes).

La mécanique de tir a ensuite été mise à jour avec la possibilité de charger les
canons avant le tir, et ce de manière individuelle. Ainsi, maintenir le clic gauche
ou droite démarrera, respectivement, la charge de l’arme gauche ou droite. Ce
chargement est perçu par le joueur à l’aide d’une orbe translucide qui augmente
progressivement de taille au bout du canon. Au bout d’un court instant, des
particules apparaîtront en plus pour rendre l’effet plus visible au joueur. On
peut voir l’effet au bout des deux canons du vaisseau sur l’image ci-dessous.

Pour résoudre ensuite un problème pratique de jouabilité, une aide à la visée
avec un viseur dynamique a été ajouté à l’interface permettant au joueur
d’avoir une plus haute précision dans l’utilisation de ses armes.

6. OnCollisionEnter() :
https://docs.unity3d.com/ScriptReference/Collider.OnCollisionEnter.html

10

https://docs.unity3d.com/ScriptReference/Collider.OnCollisionEnter.html

Projet Blast
Rapport de projet

EPITA
17 mai 2019

Le chargement des armes du vaisseau du joueur peut être utile à ce dernier
puisqu’il a des effets sur les dégâts et sur la vitesse des projectiles. Le chargement
devient maximal au bout de 2 secondes, c’est à dire qu’au delà de 2 secondes,
les effets seront les mêmes. Le chargement maximal permet, au tir, la propulsion
de projectiles avec les effets suivants qui leur sont appliqués :

— Les projectiles font 3 fois plus de dégâts aux ennemis ; et
— Les projectiles se déplacent 2 fois plus rapidement.

3.1.4 Physique des projectiles

Tout d’abord, les tirs n’étaient que de simples cubes sans effets. Puis, nous
avons opté pour des tirs plus graphiques, avec un trail emitter derrière, de la
même manière que pour le vaisseau. La vitesse de propulsion des projectiles était
auparavant gérée indépendamment de celle du vaisseau, ce qui causait parfois
le phénomène absurde que le vaisseau allait plus vite que le projectile qu’il tire
devant lui. Ce problème a été corrigé en ajoutant la vitesse du vaisseau à la
vitesse de propulsion du projectile.

De plus, l’ajout des tirs chargés a nécessité des améliorations allant de pairs
avec celles-ci. À présent, la masse des tirs est proportionnelle à la puissance de
ceux-ci. Cela peut sembler assez anodin mais toute la physique de Unity se base
sur la masse. Par exemple, un tir d’une masse nulle n’aura aucune conséquence
sur la trajectoire d’un astéroïde qui la percute. Par contre, un tir avec une masse
importante aura tendance à repousser l’astéroïde, ou encore à influencer sur sa
vitesse ou son angle de rotation.

Les tirs chargés ont aussi une vitesse plus importante.

11

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.1.5 Améliorations

Cette partie était anciennement dénommée "les objets" car nous avions en
idée que les objets seraient utilisés pour améliorer le vaisseau. Cependant, nous
avons préféré faire un système d’amélioration de vaisseaux plus simple. À l’aide
des points d’expériences pouvant être acquis dans les missions, il est désormais
possible "d’acheter" des améliorations. L’amélioration est appliquée au vaisseau
après l’échange des points. Les améliorations implémentées concernent l’accé-
lération du vaisseau, les points de vie du joueur et les dégâts qu’infligent les
armes du vaisseau. Chacune d’entre elles dispose de trois niveau d’amélioration
différents.

3.1.6 Interactions entre entités

Au début du projet, nous avions introduit les points de vie pour les vais-
seaux, mais ces points ne pouvaient pas évoluer. Nous avons par la suite ajouté
un nouvel aspect au vaisseau qui le rend destructible. Une collision entre un
objet quelconque et le vaisseau fera baisser son niveau de vie. Cela fonctionne
notamment avec les armes équipées sur les vaisseaux. Il est donc possible de
tuer un autre joueur dans une partie multijoueur à l’aide de ses armes.

Cette fonctionnalité a été étendue à l’aide d’une interface C# 7. Cette no-
tion, abordée en travaux pratiques à l’EPITA, permet de définir des méthodes
qui sont communes à différents objets. Dans ce cas précis, l’interface C# (nom-
mée ILivingEntities) définit des méthodes communes à toutes les entités "vi-
vantes", c’est-à-dire des objets possédant un niveau de vie qui peut baisser au
cours de la partie jusqu’à zéro, ce qui engendre la mort de l’entité. Les joueurs
sont considérés comme des entités vivantes et implémentent donc cette interface.

7. Interface C# :
https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/
interface

12

https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/interface
https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/interface

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.1.7 Collisions

Initialement, les collision étaient gérées grâce à des formes géométriques
simples : un pavé pour les vaisseaux et une sphère pour les astéroïdes. Cette
technique avait ses avantages, mais aussi beaucoup d’inconvénients. Cela amé-
liorait grandement la vitesse de calcul des collisions bien-sûr, mais diminuait
aussi sa précision. On se retrouvait alors avec un vaisseau qui se cognait avec
des astéroïdes à quelques mètres de lui. Sachant que les collisions retirent de la
vie, il était important d’avoir une boîte de collision plus précise afin de pouvoir
éviter ces astéroïdes facilement. De plus, les astéroïdes n’ont pas une forme to-
talement sphérique et le vaisseau pouvait rentrer dans certaines aspérités de la
surface lorsque les astéroïdes étaient plus gros que la normale.

C’est pourquoi le projet a subi une refonte totale du système de collision.
Celles-ci ne sont maintenant plus gérées par des BoxCollider 8 ou des Sphere-
Collider 9, mais par des MeshCollider 10. En utilisant les Mesh 11 (qui étaient
fournies dans les différentes librairies d’où viennent nos modèles 3D) nous avons
été capable, grâce à Unity, d’obtenir une boîte de collision complexe que voici :

8. BoxCollider : https://docs.unity3d.com/ScriptReference/BoxCollider.html
9. SphereCollider : https://docs.unity3d.com/ScriptReference/SphereCollider.html

10. MeshCollider : https://docs.unity3d.com/ScriptReference/MeshCollider.html
11. Un mesh ou maillage est un objet tridimensionnel constitué de sommets, d’arêtes et de

faces organisés en polygones sous forme de fil de fer dans une infographie tridimensionnelle. Les
faces se composent généralement de triangles, de quadrilatères ou d’autres polygones convexes
simples, car cela simplifie le rendu. Les faces peuvent être combinées pour former des polygones
concaves plus complexes, ou des polygones avec des trous (il s’agit, pour résumer, de l’aspect
physique d’un objet). — https://fr.wikipedia.org/wiki/Mesh_(objet)

13

https://docs.unity3d.com/ScriptReference/BoxCollider.html
https://docs.unity3d.com/ScriptReference/SphereCollider.html
https://docs.unity3d.com/ScriptReference/MeshCollider.html
https://fr.wikipedia.org/wiki/Mesh_(objet)

Projet Blast
Rapport de projet

EPITA
17 mai 2019

Cependant, ce MeshCollider ne sera pas capable d’intéragir avec d’autres
MeshCollider. Cela pause un problème sachant que les astéroïdes aussi possèdent
cette spécificité. Ils faut donc que les collider deviennent Convex 12 : les Convex
MeshCollider possèdent une limite de 255 triangles, ce qui explique la diminution
de la précision de la version finale de la boîte de collision du vaisseau (il en va
de même pour les astéroïdes). Celle-ci reste tout de même suffisante pour ce
projet :

12. Convex : https://docs.unity3d.com/ScriptReference/MeshCollider-convex.html

14

https://docs.unity3d.com/ScriptReference/MeshCollider-convex.html

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.2 Les missions

Afin d’apporter un but au jeu, un système de mission a été implémenté.
Il permet au joueur d’avoir une progression et des objectifs à accomplir. Les
missions permettent d’obtenir des points d’expérience permettant entre autre
l’amélioration du vaisseau.

Les missions sont implémentées à l’aide de classes abstraites 13. Cette notion
a également été vue en travaux pratiques à l’EPITA. Ce type de classe permet
de définir une classe partielle, dans ce cas Mission, qui doit être étendue. Dans
notre cas, cela nous permet de développer différent types de missions, tout
en gardant des propriétés et méthodes communes, ce qui évite de gérer tous
les types manuellement pour faire la même chose. Tous les types de missions
partagent certaines propriétés, comme le nombre de points d’expérience qu’elles
donnent au joueur quand celui-ci la finit. Les missions disposent toutes de mêmes
méthodes comme la méthode Begin() qui correspond au démarrage de la mission.

3.2.1 Mission de livraison

Le premier type de mission implémenté est la mission de livraison. Le joueur
doit se rendre dans une zone pour récupérer un colis et doit l’amener dans
une autre zone. Les positions des zones sont déterminées aléatoirement tout en
restant dans des distances atteignables par le joueur.

3.2.2 Mission de destruction

Le second type de mission implémenté est la mission de destruction. Un
bâtiment apparaît sur la map et le joueur doit s’y rendre afin de détruire le
bâtiment avant que la tourelle présente au dessus ne le détruise. La position est
déterminée comme celle de la mission de livraison.

Ces deux types de missions utilisent des zones de début et de fin représentées
par des bâtiments. Ces derniers seront vus plus en détail dans leur partie dédiée.

13. Classes abstraites :
https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/
abstract

15

https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/abstract

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.3 Interfaces

L’interface est gardée volontairement simple pour permettre au joueur de
garder une bonne visibilité dans le jeu. Plusieurs éléments ont étés implémentés
au fur et à mesure de la progression du jeu, c’est pourquoi nous allons les détailler
dans leur ordre chronologique.

3.3.1 La boussole

Pour permettre au joueur de se repérer dans l’espace, une boussole a été
ajoutée à l’interface. Elle se met à jour selon les mouvement et la position du
joueur. La boussole est constituée d’un indicateur qui indique la valeur actuelle
et la boussole en elle-même en dessous. Il s’agit d’une très grande image de
près de 8000 pixels de largeur qui contient toutes les valeurs de 0 à 350. Cette
image est partiellement masquée dans Unity à l’aide du composant Mask 14

et est déplacée en fonction de l’angle du joueur entre un vecteur arbitraire
qui représente le nord (arbitraire car il n’y a pas de nord dans l’espace) et
l’orientation du vaisseau. L’image fait une boucle car en arrivant à la toute
droite de celle-ci on retourne au début, c’est-à-dire à gauche. Cette boussole est
utile pour se rendre quelque part sur la carte et sert d’indicateur de direction.

3.3.2 HUD (Head-Up Display)

Afin de pouvoir rajouter des caractéristiques au vaisseau ainsi que d’informer
le joueur de son statut, nous avons ajouté l’affichage d’informations du vaisseau
sur le bord inférieur gauche de l’écran. La santé et la vitesse du vaisseau du
joueur y sont affichés. La vitesse est donnée en mètres par seconde, 1 mètre
équivalent à une unité dans le monde en 3D.

14. Mask : https://docs.unity3d.com/ScriptReference/UI.Mask.html

16

https://docs.unity3d.com/ScriptReference/UI.Mask.html

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.3.3 Le viseur

Pour résoudre un problème de difficulté à la visée, nous avons ajouté un
viseur dynamique à l’interface. Ce dernier est affiché quand le vaisseau pointe
en direction d’un objet dans l’espace. Cela est rendu possible grâce au tracé de
rayons virtuels avec la méthode Physics.Raycast() 15. Cette fonction retourne
le point d’impact avec un objet, s’il y en a un. Le point d’impact est ensuite
projeté sur l’interface en deux dimensions, ce qui nous donne la position à jour
du viseur, qui se placera aux coordonnées correspondantes.

Dans le cas où le rayon virtuel ne rencontre aucun objet, la
fonction retourne faux et le viseur est masqué jusqu’à ce que
le joueur dirige son vaisseau vers un nouvel objet.

3.3.4 Missions et améliorations

Pour la deuxième soutenance et l’introduction des missions et des améliora-
tions, il a fallu que l’interface soit adaptée à ces nouvelles additions.

C’est pourquoi l’interface de jeu possède maintenant deux bou-
tons permettant d’accéder aux deux fenêtres Upgrades et Mis-
sions, montrées ci-dessous.

Sur l’image, on peut voir à gauche la fenêtre des upgrades et à droite la
fenêtre des missions. Les caractéristiques des missions et des upgrades seront
expliquées dans les sections suivantes.

Nous avons aussi ajouté un menu de pause, accessible en appuyant sur la
touche Esc . Celui-ci permet de mettre le jeu en pause pour le reprendre ensuite,
ou le quitter.

15. Physics.Raycast() : https://docs.unity3d.com/ScriptReference/Physics.Raycast.
html

17

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.3.5 Menu principal

Enfin, l’évolution du projet a aussi nécessité une remise en forme du menu.
Pour la première partie de développement, le menu n’était composé que d’un
bouton "Play". Pour la seconde partie, nous avions créé une scène entière, se
déroulant dans une station spatiale avec chaque sous-menu qui correspondaient à
un angle de caméra et un endroit de la station différent. Voici à quoi ressemblait
le menu principal :

Pour le menu final, la structure du menu en général est restée la même
(Singleplayer et Multiplayer), avec quelques ajouts comme un menu d’option
ainsi que la possibilité de choisir un pseudonyme avant de rejoindre une partie
multijoueur. De plus, nous avons ajouté quelques améliorations visuelles. Tout
d’abord, le vaisseau du joueur au premier plan, ainsi qu’une refonte des textures
de la station. Ensuite, nous avons retiré le soleil, et ajoutés des astéroïdes dans
le fond (les astéroïdes tournent).

18

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.4 Sauvegardes

Avant la deuxième soutenance, la gestion des sauvegardes avait été laissée de
côté par manque de pertinence par rapport à ce que nous avions alors développé.

Depuis, avec l’ajout des missions et des améliorations, la gestion des sauve-
gardes est devenu une fonctionnalité importante à implémenter dans notre jeu
vidéo. Par simplicité, nous avons choisi de gérer les sauvegardes avec des fichiers
JSON 16.

Le système de sauvegarde permet donc au joueur de sauvegarder son ex-
périence ainsi que les attributs de son vaisseau. Ces attributs sont vastes et
comprennent les améliorations appliquées par le joueur (attributs préfixés par
"addon"), ainsi que :

— le nom du joueur (playerName) ;
— sa position (playerX, playerY, playerZ) ;
— sa rotation (playerRX, playerRY, playerRZ) ;
— son niveau de vie (playerHealth) ;
— son niveau d’expérience (playerXp)

À la deuxième soutenance, le chargement de la sauvegarde, si elle existe,
était fait automatiquement au lancement d’une partie multijoueur ou solo. La
sauvegarde était manuelle et se faisait en appuyant sur la touche O .

Aujourd’hui, la sauvegarde est chargée au lancement du jeu lui-même, ce qui
permet de charger le nom du joueur et d’éviter de le lui demander à nouveau.
La sauvegarde est encore manuelle et peut se faire à partir du menu de pause,
en plus de la touche attribuée O .

Il est toujours possible d’effacer la sauvegarde existante de son ordinateur en
appuyant sur la touche L . Alors, au prochain lancement, le jeu se comportera
comme si il était lancée pour la première fois, sauf si une autre sauvegarde a été
créée.

16. JSON : https://www.json.org/
https://fr.wikipedia.org/wiki/JavaScript_Object_Notation

19

https://www.json.org/
https://fr.wikipedia.org/wiki/JavaScript_Object_Notation

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.5 Monde et carte

3.5.1 Génération d’astéroïdes

Parmi les nombreux scripts que nous avons écrit, il y a le générateur d’as-
téroïdes. Il constitue la majorité de la création de l’environnement de jeu. À
chaque Update 17, ce script va compter le nombre d’astéroïdes présents autour
du joueur. Si ce nombre est trop faible, il va instancier des astéroïdes de ma-
nière aléatoire autour de celui-ci (en faisant attention tout de même à ne pas
instancier un astéroïde dans le joueur ou dans un autre astéroïde).

Génération d’un astéroïde :

La génération définit des caractéristiques aléatoirement, telles que sa position
(tout de même comprise entre certaines bornes), sa taille (entre 0 et 3), et sa
rotation. L’une des seules caractéristiques qui n’est pas aléatoire est la masse de
l’astéroïde généré. En effet, celle-ci sera égale à 100 fois sa taille. Cela permet
d’avoir un certain dynamisme/réalisme puisque les objets les plus gros seront
moins influencés physiquement par les tirs des vaisseaux que les petits.

Prévisualisation :

La création de ce script nous a aussi permis de découvrir comment utiliser
les Gizmos 18 dans les scripts. Ils se sont avérés très utile afin de visualiser la
zone dans laquelle les astéroïdes sont générés, et donc quelle zone vérifiera le
nombre d’astéroïde. Voici à quoi ressemble la zone :

17. La fonction Update est appelée à chaque image calculée du jeu. Pour plus d’informa-
tions :https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
18. Les Gizmos sont des outils associés à un objet dans une scène. Ils permettent un débo-

gage visuel et des outils d’aide dans la prévisualisation de la scène, comme la grille de la scène
ou les boîtes de collision. https://docs.unity3d.com/Manual/GizmosMenu.html

20

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/Manual/GizmosMenu.html

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.5.2 Skybox

La skybox 19 est un élément important pour immerger le joueur dans le monde
fictif de notre jeu vidéo car elle représente le décor. La première version avait été
créée à l’aide du logiciel Spacescape 20. Il s’agit d’un outil de création de skybox
spatiales avec des étoiles et des nébuleuses. Ce logiciel est complet mais est
difficile à prendre en main. Pour obtenir un bel univers, il faut créer différents
calques, avec par exemple des points pour les étoiles. L’addition de plusieurs
calques donne un résultat plus esthétique.

Lorsque la création de calques est terminée, le logiciel dispose d’une fonction
d’exportation pour des moteurs de jeux vidéos dont Unity. L’importation dans
Unity est ensuite très simple : 6 images sont créées et il suffit de suivre les
instructions d’Unity.

Voilà la skybox que nous avons utilisé jusqu’alors :

19. Une skybox, comme son nom l’indique, représente le ciel. Elle montre à quoi ressemble
le monde au delà de la distance atteignable. Elle donne l’illusion d’un monde plus grand qu’il
n’est réellement. — https://docs.unity3d.com/Manual/class-Skybox.html
20. Spacescape : https://sourceforge.net/projects/spacescape/

21

https://docs.unity3d.com/Manual/class-Skybox.html
https://sourceforge.net/projects/spacescape/

Projet Blast
Rapport de projet

EPITA
17 mai 2019

Nous avons finalement décidé de nous tourner vers une autre skybox, qui était
déjà présente dans le pack contenant les astéroïdes. Celle-ci est plus épurée, plus
lumineuse, et la présence d’un soleil permet de se repérer plus facilement dans
l’espace que précédemment.

Nous avons aussi, suite à se changement de skybox, changé la position et
l’angle de la lumière directionnelle de la scène pour pouvoir faire en sorte que
celle-ci provienne du soleil de la skybox et donc que les ombres soient dans le
même sens que ce soleil.

22

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.5.3 Map

Pour permettre un meilleur repérage du joueur dans l’espace, nous avons
ajouté une vue du dessus. La touche M permet de basculer entre deux modes
de vue :

— La vue normale : une vue à la troisième personne, derrière le vaisseau.
— La vue "carte" : une vue de loin, au dessus du joueur.

Dans cette vue, les contrôles du vaisseau sont désactivés et le joueur peut avoir
un aperçu de ce qui se trouve autour de lui. Pour permettre une plus grande
flexibilité, le joueur peut, lorsque qu’il en mode de vue d’ensemble, zoomer ou
dézoomer à l’aide de la molette de sa souris.

Vue d’ensemble autour du joueur :

Pour le mode de vue normal, le joueur a la possibilité de faire pivoter la
caméra autour de son vaisseau en conservant sa trajectoire en maintenant la
molette de la souris appuyée, permettant de voir sur les côtés ou à l’arrière du
vaisseau.

23

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.5.4 Les bâtiments

Mission : Livraison

Ce bâtiment apparaît dès qu’une mission du type "livraison" est acceptée.
Pour commencer la mission, il faut se rapprocher de celui-ci. Une fois fait, un
bâtiment identique apparaît autre part dans l’espace et il faut rapporter le
paquet à sa position. Les bâtiments disparaissent alors lorsque le joueur s’éloigne
de celui-ci après avoir effectué sa mission.

La zone rouge est celle à toucher pour récupérer le paquet

24

Projet Blast
Rapport de projet

EPITA
17 mai 2019

Mission : Destruction

Le bâtiment des missions de destruction est une tour, placée sur un astéroïde
avec une tourelle au dessus. Cette tourelle tire automatiquement sur le joueur
dès que celui-ci est à portée de vue. Cette tourelle prend le premier joueur dans
son champ de vision et le verrouille. Dès que celui-ci sort de sa zone de tir, la
tourelle arrêtere de tirer (sauf si un autre joueur est dans la zone, au quel cas
elle le verrouillera).

À gauche, la première
version du bâtiment de
destruction. L’astéroïde
était beaucoup plus gros,
et possédait plusieurs bâ-
timents. En dessous, la
version finale, avec un
astéroïde beaucoup plus
petit, un seul bâtiment
mais toujours avec la
tourelle sur son toit.

25

Projet Blast
Rapport de projet

EPITA
17 mai 2019

Mission : Destruction : La tourelle

Le fonctionnement de la tourelle, survolé précédemment, va être un peu plus
explicité ici.

À son instanciation, la fonction GameObject.FindGameObjectsWithTag() 21

va remplir un tableau à une dimension avec tout les objets possédant le tag
"Player", c’est-à-dire tous les joueurs. Ensuite, à chaque Update, le script cal-
culera grâce à la fonction Vector3.Distance la distance entre la tourelle et
les joueurs contenus dans le tableau. Si l’un de ces joueurs est à une distance
inférieure à la distance de verrouillage, ce joueur deviendra la "cible" de la tou-
relle. Si la distance qui sépare le joueur et la tourelle finit par être supérieure,
la tourelle ne ciblera plus personne.

De plus, la tourelle possède sa propre vitesse de tir. En effet, à chaque Up-
date, un Timer s’incrémentera et lorsqu’il aura dépassé un certain seuil fixé à
l’avance, la tourelle tirera (ce qui réinitialisera le Timer par la même occasion).

Lors du développement de cette tourelle, les premiers soucis ont étés de
la "maintenir" sur son socle, car elle vise le joueur en utilisant la fonction
Transform.LookAt() et que celle-ci se sert du centre de rotation de l’objet.
Comme la tourelle est plus maintenue d’un coté que de l’autre, celle-ci "flot-
tait" dans les airs. Un autre problème a été de gérer la rotation de l’astéroïde.
Comme la tourelle est posée sur le bâtiment, lui même posé sur l’astéroïde et
que celui-ci a une rotation, il fallait que la tourelle calcule la différence entre sa
propre rotation et la rotation de son point d’ancrage.

Ce qui est intéressant avec ce script est qu’il est capable de gérer plusieurs
joueurs en même temps, grâce à ce système de "file d’attente" où le premier
joueur à rentrer dans la zone sera le premier attaqué, puis le second, et ainsi de
suite.

21. GameObject.FindGameObjectsWithTag() :
https://docs.unity3d.com/ScriptReference/GameObject.FindGameObjectsWithTag.html

26

https://docs.unity3d.com/ScriptReference/GameObject.FindGameObjectsWithTag.html

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.6 Multijoueur

3.6.1 Le multijoueur en jeu

Le multijoueur permet à plusieurs joueurs de se rejoindre dans une même
partie. L’implémentation de cette fonctionnalité a été effectuée par Nicolas. Elle
utilise l’outil Photon 22 pour permettre la communication entre les joueurs et
faciliter le développement. Photon admet plusieurs avantages, comme sa facilité
d’utilisation, mais également l’aspect cloud. En effet, l’éditeur de ce module
s’occupe lui-même d’héberger les utilisateurs. Au lieu de fonctionner par partage
d’IP comme dans de nombreux jeux, il suffit ici d’entrer le nom d’une salle pour
rejoindre une partie. Il est possible de créer une salle mais celle-ci sera hébergée
directement chez Photon au lieu d’être hébergée directement chez le joueur, ce
qui permet une plus grande simplicité pour que plusieurs joueurs se rejoignent :
il n’est par exemple pas nécessaire d’ouvrir des ports ou d’échanger des adresses
IP, ce qui est un avantage pour les utilisateurs non initiés.

Le multijoueur est requis dans le cadre de ce projet et est une partie de
travail non négligeable. Il nous a été recommandé à plusieurs reprises de faire
de cette fonctionnalité une priorité et de tout implémenter autour d’elle pour
ne pas avoir à tout recommencer par la suite. Ces différentes raisons expliquent
pourquoi cette partie a été travaillée dès le début du projet. Le premier ob-
jectif était que deux joueurs puissent se rejoindre dans une même partie et
puissent évoluer dans le même monde. Il a donc été nécessaire de faire des dif-
férents éléments qui composent un joueur un prefab, avec à l’intérieur le modèle
3D du joueur, sa caméra, ses scripts et ses effets. Il s’agit, comme son nom
l’indique, d’un élément « préfabriqué ». Cet élément est ajouté à la scène à

22. Photon : https://www.photonengine.com/
Photon PUN : https://www.photonengine.com/en-US/PUN

27

https://www.photonengine.com/
https://www.photonengine.com/en-US/PUN

Projet Blast
Rapport de projet

EPITA
17 mai 2019

chaque fois qu’un joueur rejoint une partie. On dit qu’il est « instancié ». Pho-
ton adapte des fonctions déjà existantes de Unity pour qu’elles fonctionnent
dans l’environnement multijoueur. C’est par exemple le cas pour créer une ins-
tance de joueur : la fonction de base est Instantiate() 23 et celle de Photon
est PhotonNetwork.Instantiate() 24. Ces fonctions prennent en général les
mêmes paramètres que celles de base, avec parfois quelques paramètres en plus
liés à la mise en réseau.

Une partie importante dans le développement de cette fonctionnalité est la
résolution de conflits. En effet, il faut s’assurer qu’un joueur ne voit et ne contrôle
que son vaisseau et pas celui d’un autre joueur, tout en assurant que le monde
dans lequel ils évoluent est le même pour chacun d’entre eux. Il faut donc dans
de nombreux scripts, notamment celui qui gère les déplacements du vaisseau,
vérifier que celui-ci est associé au bon joueur avant d’effectuer son code. Dans le
cas contraire, la vérification se faisant en chaque début de script, la suite du code
n’est en général pas effectuée. La caméra a posé le plus de problèmes malgré
que la solution soit simple, il fallait seulement la laisser désactivée dans tous
les cas et l’activer uniquement lorsqu’elle appartenait au joueur. La propriété
PhotonView.IsMine s’est avérée très utile pour les différentes vérification.

Pour que des objets soient transmis à travers le réseau, il faut ajouter des
composants du module Photon appelés Photon View. Il faut ensuite relier à ce
composants les autres composants à synchroniser qui composent l’objet, tels que
les Rigidbody qui permettent de leur appliquer de la physique. Des Photon View
sont par exemple présents sur le joueur et les projectiles.

Nous avons ensuite ajouté la possibilité de choisir un pseudonyme qui sera
affiché en jeu au dessus de leur vaisseau, comme l’image présentée plus tôt
l’illustre.

À chaque ajout de fonctionnalité, il a été nécessaire d’assurer que chacune
d’entre elles étaient compatibles avec le multijoueur. Si ce n’était pas le cas, il
fallait les retravailler. Cela a permis de garder un multijoueur fonctionnel tout
au long du développement.

23. Instantiate() :
https://docs.unity3d.com/ScriptReference/Object.Instantiate.html
24. PhotonNetwork.Instantiate() :

https://doc.photonengine.com/en-us/pun/current/gameplay/instantiation

28

https://docs.unity3d.com/ScriptReference/Object.Instantiate.html
https://doc.photonengine.com/en-us/pun/current/gameplay/instantiation

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.6.2 Intégration avec Discord Rich Presence

Comme de nombreux joueurs de jeux vidéos, et comme beaucoup de nos
camarades à l’EPITA, nous utilisons beaucoup Discord 25 et les services que
l’application rassemble. Discord est un logiciel de discussion par Internet. Ce
service est développé à l’origine pour les joueurs et se connecte bien aux jeux
vidéos. Nous avons alors pensé intégrer le service Rich Presence 26 de Discord à
notre jeu vidéo. Cela a pour effet d’afficher sur le profil Discord de l’utilisateur
la notification qu’il est en train de jouer à Blast après qu’il ait lancé le jeu.

L’information contient un certain nombre d’informations, que nous appelons
le "contexte". Sur les deux images ci-dessous, on peut voir que l’affichage diffère
selon si la partie dans le jeu est lancé en mode solo ou multijoueur.

Avant, cette notification n’apparaissait qu’une fois que le joueur ait lancé une
partie. Maintenant, cette information apparaît dès le lancement du jeu, avec ce
nouveau contexte utilisé pour l’affichage :

25. Discord : https://discordapp.com/
26. Discord Rich Presence : https://discordapp.com/rich-presence

29

https://discordapp.com/
https://discordapp.com/rich-presence

Projet Blast
Rapport de projet

EPITA
17 mai 2019

3.7 Les Sons

N’ayant pas vraiment de connaissances en matière de conception sonore, nous
avons pu récupérer des sons sur le site ZapSplat 27, une bibliothèque gratuite
d’effets sonores libres de droits.

Un pack entier de plusieurs Mégaoctets contenait des sons de moteurs, de tirs
de laser, mais aussi des voix d’une intelligence artificielle prononçant quelques
mots. C’est avec tout cela que nous avons pu rajouter des sons à notre jeu vidéo.

Parmi ces sons, nous en trouvons deux prononcés par une IA :
— "Welcome", prononcé à l’ouverture du jeu.
— "Scan Complete", prononcé quand le joueur réussit à se connecter à Pho-

ton après avoir choisi le mode multijoueur et avoir entré son nom (si
besoin).

Nous avons aussi ajouté des effet sonores, par exemple :
— Un bruit de tir laser pour chaque tir effectué par le joueur.
— Un bruit ambiant des moteurs.

Une intégration avec les scripts existant a été faite, permettant par exemple
de faire varier l’intensité du bruit ambiant des moteurs en fonction de la vitesse
du vaisseau du joueur. Cette intégration permet une meilleure immersion du
joueur lors du contrôle de son vaisseau. Plus le joueur accélère, et donc plus le
vaisseau va vite, plus le son des moteurs sera audible et aigu.

27. ZapSplat : https://www.zapsplat.com/

30

https://www.zapsplat.com/

Projet Blast
Rapport de projet

EPITA
17 mai 2019

4 Commentaire sur l’avancement

Tâche Soutenance 1 Soutenance 2 Soutenance 3
Sauvegardes 20% 50% 100%
Contrôles vaisseau 100% 100% 100%
Les objets 33% 75% 100%
Gestion du vaisseau 75% 100% 100%
Gestion des missions 10% 40% 90%
Monde/Carte 40% 90% 100%
Interface 33% 100% 100%
Multijoueur 40% 50% 70%
Site web 50% 100% 100%

Voici le planning des différents avancements prévus des parties du projet en
fonction des soutenances.

Nous sommes plutôt satisfaits de notre travail sur ce projet. Nous avons bien
avancé sur toutes les fonctionnalités sur lesquelles nous souhaitions travailler, et
nous avons même pu développer quelques fonctionnalités supplémentaires.

31

Projet Blast
Rapport de projet

EPITA
17 mai 2019

5 Le site web

Adresse web : https://g00pix.github.io/ProjetBlast

Le site web a été conçu simplement pour offrir une vitrine à notre projet.
Il regroupe la présentation du projet, les liens de téléchargement du jeu et des
rapports, ainsi que la présentation des membres du groupes.

5.1 Présentation du site

Dès la page d’accueil, une capture d’écran du jeu permet de le présenter
visuellement. L’image mise en avant (qui illustre aussi la section "Introduction"
de ce rapport) présente très efficacement les graphismes et l’univers de notre
jeu.

Cette image marque aussi fortement l’évolution qu’il y a eu depuis la dernière
soutenance, puisqu’elle remplace l’image que nous utilisions précédemment pour
ce rôle :

32

https://g00pix.github.io/ProjetBlast

Projet Blast
Rapport de projet

EPITA
17 mai 2019

5.2 Plan du site

Voilà le plan de notre site internet, tel que le menu le présente :

— La page d’accueil
— La page de l’évolution du projet
— La page des téléchargements
— La page des fonctionnalités du jeu
— La page de présentation du groupe
— La page de contact

La page d’accueil est la page qui intègre l’image que nous avons présenté
dans la précédente sous-section, ainsi qu’un présentation rapide du projet.

La page qui retrace les évolution majeures du projet permet de mettre en
évidence les difficultés et les moments importants que notre projet ou notre
groupe ont traversés.

La page des téléchargements contient les liens pour télécharger le jeu, ainsi
que les fichiers en rapport avec le projet : notamment le cahier des charges et
les rapports de soutenance.

La page qui présente les fonctionnalités majeures du jeu permet d’offrir au
visiteur un aperçu de ce qui est possible de faire dans notre jeu vidéo.

La page de présentation du groupe présente ce dernier, ainsi que chacun de
ses membres. Des liens ont été ajoutés pour contacter les membres individuel-
lement par mail, ou pour accéder à leur profil sur GitHub.

Finalement, la page de contact permet de rédiger puis d’envoyer un mail
collectif à tous les membres du groupe.

33

Projet Blast
Rapport de projet

EPITA
17 mai 2019

5.3 Informations techniques

Le site internet est hébergé sur GitHub grâce à son service GitHub Pages 28

et est accessible publiquement à l’adresse web indiquée au début de cette section.
Cette méthode est très pratique car le code source du site internet est lié à celui
du projet dans le même repository. Le code source du site est conservé dans une
branche appelée « gh-pages » alors que le code source du jeu vidéo est conservé
dans une autre branche, appelée « master ». Toutes les modifications faites
dans la branche du site internet seront automatiquement répercutées sur le site
lui-même. Ce déploiement est rapide et facilite grandement la collaboration en
groupe.

GitHub Pages utilise Jekyll 29 pour construire les site web que le service hé-
berge. Jekyll est un outil de génération de site internet statique. Il offre quelques
fonctionnalités pratique au développeur, et nous en avons donc tiré profit.

Pour le moment, le site utilise le framework Bootstrap 30 pour faciliter le
développement et l’ajout d’éléments esthétiques, sans avoir à perdre beaucoup
de temps sur du code CSS qui n’est pas l’objectif de ce projet. Son utilisation
est simple et bien documentée, il suffit d’ajouter des éléments HTML contenant
les noms de classes correspondant pour que le site prenne forme rapidement.

Grâce à Jekyll, le développement du site se fait à l’aide de templates HTML
qui seront remplies par Github Pages à chaque déploiement. Le contenu s’écrit
majoritairement en Markdown 31, un langage de balisage léger, ce qui rend l’écri-
ture plus simple. Il est possible d’ajouter des petites parties de code HTML dans
les fichiers de contenu pour différencier certaines pages et y ajouter des éléments
plus complexes, qui interagissent avec le framework Bootstrap.

28. GitHub Pages : https://pages.github.com/
29. Jekyll : https://jekyllrb.com/
30. Bootstrap : https://getbootstrap.com/
31. Markdown : https://fr.wikipedia.org/wiki/Markdown

34

https://pages.github.com/
https://jekyllrb.com/
https://getbootstrap.com/
https://fr.wikipedia.org/wiki/Markdown

Projet Blast
Rapport de projet

EPITA
17 mai 2019

6 Téléchargement et Installation

6.1 Téléchargement

Le jeu est disponible au téléchargement sur le site web du Projet Blast, dans
la section Téléchargements.

6.2 Installation

Lorsque l’utilisateur clique sur le bouton Télécharger, un fichier du format
.msi 32 est reçu. Ce type est le format d’installateur historique du système d’ex-
ploitation Microsoft Windows. Sa création est compliquée et nécessite un en-
semble d’outils appelés WiX Toolset 33. La programmation de cet installateur
se fait avec le langage de balisage XML 34. Le grand inconvénient de ce type
d’installateur est la complexité en ce qui concerne sa programmation. En effet,
il est nécessaire de lister manuellement chaque fichier ainsi chaque dossier et
sous-dossier. Le choix a été porté sur cette méthode dans le but d’apprendre,
car elle est très utilisée dans le monde de l’informatique. En effet, même Micro-
soft l’utilise pour installer ses différents produits comme le pack de bureautique
Office.

Pour installer le jeu, l’utilisateur a uniquement besoin de suivre les étapes
qui lui sont proposées. L’installation démarre alors. Un raccourci est créé sur le
bureau et l’installateur se ferme. L’utilisateur peut alors directement lancer le
jeu.

32. .msi : https://fr.wikipedia.org/wiki/Windows_Installer
33. WiX Toolset : https://wixtoolset.org/
34. XML : https://fr.wikipedia.org/wiki/Extensible_Markup_Language

35

https://fr.wikipedia.org/wiki/Windows_Installer
https://wixtoolset.org/
https://fr.wikipedia.org/wiki/Extensible_Markup_Language

Projet Blast
Rapport de projet

EPITA
17 mai 2019

7 Structure du repository

7.1 Structure physique

Comme dans nos rapports de soutenance, voilà la représentation schémati-
sée de la structure du repository Git de notre projet. Cette visualisation a été
générée à l’aide de l’outil Gource 35 à partir de l’historique des modification de
notre projet. Chaque branche représente un dossier, chaque élément représente
un fichier et chaque couleur représente un type de fichier.

À la 1ère, la structure ressemblait à cela :

À la 2nde soutenance, elle ressemblait à cela :

35. Gource : https://gource.io/

36

https://gource.io/

Projet Blast
Rapport de projet

EPITA
17 mai 2019

Aujourd’hui, voilà à quoi ressemble la structure finale de notre projet :

Au bout droit, on trouve la racine du projet. De droite à gauche, on trouve
sur l’arbre :

— Les fichiers de configuration Unity, dont la majorité sont en bleu ciel.
— Au centre, les fichiers du jeu que nous avons développé, y compris scripts

et éléments du jeu.
— À gauche, les grandes branches de la partie haute correspondant aux trois

librairies principales que nous avons utilisé :
— StarSparrow, une bibliothèque de vaisseaux que nous utilisons dans

le jeu.
— Photon, un framework réseau qui nous aide pour l’implémentation du

multijoueur.
— TextMeshPro (une plus petite branche), une librairie qui nous permet

d’améliorer les textes de l’interface.
— Enfin, toujours à gauche, dans la partie basse du schéma, la dernière

grande branche correspond à tous les assets qui ont été nécessaires à la
conception du nouveau menu de notre jeu.

37

Projet Blast
Rapport de projet

EPITA
17 mai 2019

7.2 Notre projet sur Github

Le repository, et en particulier GitHub, nous permet aussi de travailler plus
efficacement en groupe sur le projet. Nous avons mis à profit les outils de col-
laboration qui nous sont à notre disposition : à savoir la création d’issues et de
pull requests.

Les issues nous permettent de signaler et de discuter des bugs rencontrés,
ainsi que des futurs fonctionnalités que nous prévoyons d’ajouter à notre jeu.
Elles permettront par la suite lorsque le projet sera disponible au public de
signaler des bugs détectés par les joueurs que nous pourront alors corriger.

Les pull requests sont créées à chaque fois que le développement d’une fonc-
tionnalité majeure est terminé. Cela permet à l’équipe de se mettre au courant
du développement fait par d’autres, ainsi que de donner leur avis sur le travail
qui a été fait.

En quelques chiffres, notre projet sur Github représente :
— Plus de 250 commits et 3 collaborateurs.
— Un repository d’un taille de plus de 150 Mo.
— Plus de 30 pull requests résolues.
— Plus de 10 issues créées.

38

Projet Blast
Rapport de projet

EPITA
17 mai 2019

8 Documentation et Informations

8.1 Documentation

Ce projet aura nécessité un gros travail de documentation. Nos sources prin-
cipales ont bien sûr été la documentation Unity 36 ainsi que celle de PhotonEn-
gine 37 (concernant le multijoueur), mais aussi MSDN 38 (pour le langage C#
en lui même) et enfin le forum d’entraide StackOverflow 39.

8.2 Librairies et Assets

Nous avons utilisé plusieurs librairies dans notre projet. En voici la liste :
— StarSparrow, une librairie gratuite sur le Unity Asset Store. Elle contient

les modèles 3D des vaisseaux, avec des variations de couleurs, les maté-
riaux et les textures de ceux-ci ainsi que les Mesh (très utiles, surtout
pour les mesh-colliders).

— Photon PUN : Il s’agit d’un moteur réseau qui permet de gérer entière-
ment le multi-joueur.

— TextMeshPro permet d’écrire des textes plus graphiques et plus colorés
que l’éditeur de base de Unity, plutôt pauvre de ce coté-ci.

36. Unity : https://docs.unity3d.com/Manual/index.html
37. Photon PUN : https://doc.photonengine.com/en-us/pun
38. MSDN : https://msdn.microsoft.com/
39. StackOverflow : https://stackoverflow.com/

39

https://docs.unity3d.com/Manual/index.html
https://doc.photonengine.com/en-us/pun
https://msdn.microsoft.com/
https://stackoverflow.com/

Projet Blast
Rapport de projet

EPITA
17 mai 2019

9 Expériences personnelles

9.1 Nicolas FROGER (chef du projet)

J’appréhendais beaucoup la création de ce jeu vidéo. En effet, je voyais cela
comme un projet de très grande envergure, ce qui était une grande première pour
moi. Ce projet s’est avéré difficile mais je le termine avec un sentiment positif.
En effet, cela a été l’occasion pour moi d’en apprendre beaucoup sur le travail
d’équipe car il a fallu s’adapter à de nombreuses reprises. J’ai du apprendre à
travailler avec des personnes que je ne connaissais pas auparavant, et cela ne
m’a pas dérangé. Je suis fier que notre groupe, malgré qu’il ait subit beaucoup
de changements au cours du temps, ait réussi à produire un jeu fonctionnel qui
nous plaît. J’ai dû assumer le rôle de chef de groupe, ce qui était également
une première fois pour moi. Cela a été un très bon exercice car ce n’était pas
toujours évident.

J’ai également pu mettre en œuvre mes connaissances en programmation que
j’avais pu acquérir par le passé mais aussi avec l’école dans un projet concret
de plus grande envergure que les travaux pratiques hebdomadaires. J’ai égale-
ment pu améliorer ces connaissances car ce projet a nécessité bon nombre de
recherches. Ce projet m’a permis de m’entraîner sur un aspect qui me semble
fondamental dans le développement qui est le passage de l’idée au code. En effet,
durant cette année, les travaux pratiques étaient tous très dirigés et s’apparen-
taient plus à du remplissage qu’à de la réflexion profonde, ce qui est normal pour
débuter. J’ai donc pu m’entraîner à conceptualiser une idée en quelque chose de
concret, faisable en code.

40

Projet Blast
Rapport de projet

EPITA
17 mai 2019

9.2 Mathieu GUÉRIN

Dans le rapport de 1ère soutenance, j’avais exprimé mon intérêt pour la
conception d’un jeu vidéo, et c’est toujours vrai. Le projet de S2 était un projet
concret et une opportunité de découvrir les outils lié au développement d’un jeu
vidéo et des méthodes de travail qui en découlent, et il l’a été.

J’ai beaucoup appris grâce à la conférence Unity donnée par GConfs en
février 2019, et depuis grâce à des tutoriels et de la documentation sur Inter-
net. Mes connaissances personnelles avec Git et GitHub, celles acquises en C#
grâce à l’EPITA m’auront beaucoup aidé. Quelques expériences personnelles
avec d’autres outils m’auront aidé pour les travaux annexes lié au projet :
L’utilisation et le développement d’API 40 en tout genre pour des implémenta-
tion sur certains de mes projets personnels m’ont permis d’acquérir les compé-
tences nécessaires pour intégrer Discord Rich Presence au projet.
L’utilisation, depuis longtemps, de Bootstrap, GitHub Pages et de Jekyll pour
la conception du site web de notre projet.

De plus, mon expérience a par exemple pu aider par exemple Pierre dans
son apprentissage pour l’utilisation de Git et GitHub.

Ma méthode de développement se base toujours sur mon expérience de jeu
en tant que joueur. Quasiment tout mon travail peut se résumer à ça : améliorer
le jeu d’après nos objectifs, tout en améliorant l’expérience du joueur, que ce soit
au niveau du gameplay, ou du ressenti. J’ai ajouté beaucoup de fonctionnalités
sur le ressenti, puisque c’est ce qui m’amuse particulièrement : voir concrètement
le résultat de mes ajouts au projet.

Cette dernière période est arrivée très vite. Entre les autres projets lié à
l’EPITA, les différentes démarches administratives pour notre scolarité, et bien-
tôt les partiels, il a été plutôt difficile de tenir le rythme.

Cependant, nous avons tout de même pu nous accrocher. Nous avons réussi
à finir ce qui avait été démarré et ce qui était toujours en développement lors
de la 2nde soutenance. Aujourd’hui, le résultat de notre projet nous satisfait et
est terminé.

40. API : https://fr.wikipedia.org/wiki/Interface_de_programmation

41

https://fr.wikipedia.org/wiki/Interface_de_programmation

Projet Blast
Rapport de projet

EPITA
17 mai 2019

9.3 Pierre DE LA RUFFIE

Alors, beaucoup de choses à dire sur ce projet. Déjà je suis très fier du travail
que nous avons fourni. Ensuite, je sors de cette dernière partie de développement
avec le sentiment d’avoir accumulé beaucoup de connaissances sur Unity et sur
le C#. Voulant travailler plus tard sur ce moteur de jeu, j’ai tout de suite pris
ce projet très au sérieux, le voyant aussi comme un moyen d’avoir un aperçu
sur ce qui m’attendrais par la suite.

J’ai d’abord eu beaucoup de mal à me lancer dans ce projet de second
semestre, que ce soit dans le groupe Overlord ou dans le groupe Quadro.
Pour le second, il m’a fallut un très très long temps d’adaptation. Déjà pour me
mettre à niveaux sur Git (aujourd’hui encore je ne maîtrise pas l’outil à 100%),
puis au niveau des scripts que mes camarades produisaient et qui m’étaient
difficile de comprendre. Cependant, à travers la distribution des rôles que nous
avions effectués, j’ai pu apprendre l’existence de certaines spécificités de Unity
que je ne connaissais pas, comme les MeshCollider ou les Gizmos par exemple.

Je me suis beaucoup amusé à faire le menu, les différentes scènes avec les
mouvements de caméra, et les animations. J’ai aussi découvert ce qu’étais vrai-
ment la génération procédurale sur Unity et en C#. Même si je n’ai qu’effleuré
la surface de ce sujet avec le générateur d’astéroïdes, j’ai regardé beaucoup de
tutoriels (notamment celui de Brackeys 41) et j’ai déjà beaucoup d’idées pour
d’autres projets sur Unity utilisant ce genre de mécanique.

Je garde tout de même certains regrets sur ce projet. Par exemple, j’aurais
aimé pouvoir faire de la musique mais je me suis très vite rendu compte que
cela nécessitais des connaissances plus complexes que ce que j’imaginais. De plus
le logiciel que j’avais prévu pour faire cela s’est avéré incapable d’exporter la
musique dans sa version gratuite. N’ayant pas envie de dépenser d’argent pour
ce projet, j’ai finalement décidé d’abandonner et de me focaliser sur des sons
qui augmenteraient l’immersion.

Cependant, je reste globalement satisfait du travail que nous avons accompli.
Ce projet a vraiment été pour moi une expérience enrichissante et un amusement
certain. J’espère pouvoir à nouveaux un jour refaire ce genre de projets.

41. https://www.youtube.com/watch?v=64NblGkAabk

42

https://www.youtube.com/watch?v=64NblGkAabk

Projet Blast
Rapport de projet

EPITA
17 mai 2019

10 Conclusion

Le Projet Blast a connu des débuts difficiles suite au départ de deux membre
du groupe dès le commencement ainsi qu’un début du développement un peu
tardif. Cependant, beaucoup de travail a été effectué et nous sommes aujour-
d’hui très fiers du résultat. Ce projet aura été pour nous l’occasion d’apprendre
à travailler efficacement en équipe, mais aussi d’améliorer nos connaissances en
programmation et de les utiliser dans la conception d’un projet de grande am-
pleur. Nous avons eu l’occasion d’expérimenter dans le domaine de la conception
de jeu vidéo, un domaine intéressant et ludique, que nous risquons de ne pas
revoir dans la suite de nos études. Ce tout premier projet à EPITA a été une
expérience très intéressante et enrichissante.

43

	Introduction
	Présentation générale du jeu

	Rappel du cahier des charges
	Modifications de groupe
	Mises à jour de la répartition des tâches
	Mise à jour des fonctionnalités

	Les fonctionnalités du jeu
	Le vaisseau
	Contrôles
	Mouvements du joueur
	Mécaniques de tir
	Physique des projectiles
	Améliorations
	Interactions entre entités
	Collisions

	Les missions
	Mission de livraison
	Mission de destruction

	Interfaces
	La boussole
	HUD (Head-Up Display)
	Le viseur
	Missions et améliorations
	Menu principal

	Sauvegardes
	Monde et carte
	Génération d'astéroïdes
	Skybox
	Map
	Les bâtiments

	Multijoueur
	Le multijoueur en jeu
	Intégration avec Discord Rich Presence

	Les Sons

	Commentaire sur l'avancement
	Le site web
	Présentation du site
	Plan du site
	Informations techniques

	Téléchargement et Installation
	Téléchargement
	Installation

	Structure du repository
	Structure physique
	Notre projet sur Github

	Documentation et Informations
	Documentation
	Librairies et Assets

	Expériences personnelles
	Nicolas FROGER (chef du projet)
	Mathieu GUÉRIN
	Pierre DE LA RUFFIE

	Conclusion

