Projet Blast
Rapport de projet

— Groupe Quadro —

Nicolas FROGER
Mathieu GUERIN

DE LA RUFFIE

lerre

P

2019

17 mai

Table des matiéres

(1_Introductionl

II.1 Présentation générale dujeu.

2

Rappel du cahier des charges|

2.1 Modifications de groupe| L.
2.2 Mises a jour de la répartition des taches|
2.3 Mise a jour des fonctionnalités|

Les fonctionnalités du jeu|

3.1.2 Mouvements du joueur|.

13.1.3 Meécaniques de tir|]

3.0 Mondeetcartel oo 20
13.5.1 Génération d’astéroides| 20

3.5.2 Skybox| o 21

3.5.3 Map| 23

3.0.4 Les batiments|. o000 24

3.6 Multyjoueur|o oL 27
3.6.1 Le multijjoueur en jeu| 27

13.6.2 Intégration avec Discord Rich Presence| 29

BZ TesSond. 30
4__Commentaire sur I"avancement 31
5 TLe e web 32
5.1 Présentation dusitel 0000 32
b2 Plandusitel o oo o 33
.3 Informations techniques| oo 0oL 34

[6 Téléchargement et Installation| 35
6.1 Téléchargement|. 0oL 35
6.2 Installation|o oo 35

[7 Structure du repository| 36
7.1 Structure physique| L 36
7.2 Notre projet sur Github| 38

8 Documentation et Informations| 39
BI _Documentation] 39
B2 Tibrairleset Assets 39

|9 Expériences personnelles|

Projet Blast EPITA
Rapport de projet 17 mai 2019

1 Introduction

Aprés un semestre entier de travail de groupe, le projet Blast touche enfin
a sa fin.

Malgré les difficultés rencontrées et une premiére partie de développement
compliqués, notamment au sujet de la formation du groupe, beaucoup de travail
a été effectué pour pouvoir atteindre ce stade final de notre jeu vidéo.

1.1 Présentation générale du jeu

Blast est un jeu de tir a la troisiéme personne dans l’espace. Le joueur
controle un vaisseau voyageant dans ’espace et doit effectuer plusieurs missions
qu’il peut choisir. Il en existe deux : la livraison et la destruction. Tout ses
aspects seront développés dans ce rapport.

Le projet Blast a été développé en C#E] et en utilisant le moteur de jeu
UnityE] (version 2018.3.5f). N’étant initialement pas familier avec ce moteur de
jeu, il nous a fallu un certain temps d’adaptation afin de comprendre ses méca-
niques et ses spécificités. Concernant la centralisation des données, nous avons
préféré utiliser Git et Github plutdt que Unity Collab, son analogue prévu pour
fonctionner uniquement avec Unity, puisque certains d’entre nous connaissaient
déja cet outil, trés populaire dans le domaine du développement, et qu’il offre
plus de possibilités que son alternative.

Avec le jeu est aussi fourni un site, hébergé grace a GitHubﬂ et contenant
tout d’abord un lien de téléchargement du jeu mais aussi quelques informations.

— Site : https://g00pix.github.io/ProjetBlast/
— Page des téléchargements : https://g00pix.github.io/ProjetBlast/
downloads

1. C# :https://fr.wikipedia.org/wiki/C_sharp
2. Unity : https://unity.com/
3. GitHub : https://github.com/

https://g00pix.github.io/ProjetBlast/
https://g00pix.github.io/ProjetBlast/downloads
https://g00pix.github.io/ProjetBlast/downloads
https://fr.wikipedia.org/wiki/C_sharp
https://unity.com/
https://github.com/

Projet Blast EPITA
Rapport de projet 17 mai 2019

2 Rappel du cahier des charges

2.1 Modifications de groupe

Le groupe a subi de nombreuses modifications depuis sa création. Ci-dessous
est présenté 'historique de cette évolution (avec en gris les départs) :

— Groupe d’origine
— Nicolas FROGER
— Mathieu GUERIN
— Maélle FERRARIN
— Adonis KHALIFE
— 1% soutenance
— Nicolas FROGER
— Mathieu GUERIN
— Mattéo DEMICHELE
— 2nde goutenance
— Nicolas FROGER
— Mathieu GUERIN
— Pierre DE LA RUFFIE
— Clément PERICAT

La période entre la 1°™ et la 279 soutenance a été marquée par la fusion de
deux groupes avec deux projets différents :

— BrASsT, développé par le groupe QUADRO :
— Nicolas FROGER
— Mathieu GUERIN
— BLITZKRIEG, développé par le groupe OVERLORD :
— Pierre DE LA RUFFIE
— Clément PERICAT

Apres concertation, le projet retenu, comme la premiére page du rapport le
laisse savoir, a été Blast.

Aujourd’hui, le groupe QUADRO est constitué des 3 personnes suivantes :
— Nicolas FROGER (chef de projet)

— Mathieu GUERIN

— Pierre DE LA RUFFIE

Projet Blast EPITA
Rapport de projet 17 mai 2019

2.2 Mises a jour de la répartition des taches

Avant la premiére soutenance, la répartition des taches a été un peu plus
difficile que prévue & cause des départs de membres et était donc un peu floue,
mais les bases du jeu ont néanmoins pu étre commencées.

Suite a la fusion des deux groupes aprés la premiére soutenance, il a fallu
choisir lequel des deux projets allait étre continué et lequel allait étre laissé de
coté. Le projet Blast a été retenu et c’est donc le développement de celui-ci
qui est poursuivi. Il a donc été nécessaire au nouveau membre de s’approprier
le jeu et se mettre au courant de ce qui avait déja été fait pour étre en mesure
de commencer & ajouter des fonctionnalités.

L’arrivée de Pierre lors de cette fusion a nécessité une mise a jour de la
répartition des taches. Celle-ci a été adaptée a ses compétences et n’a pas posé
de problémes.

Chacun des membres s’est intégré au projet et s’est attribué des roles en
rapport avec le développement de notre jeu vidéo :

— Nicolas : Développement multi-joueur, missions et upgrades.
— Mathieu : Développement objets, robot ennemis et gameplay.
— Pierre : Création et développement interface, audio et map.

2.3 Mise a jour des fonctionnalités

En ce qui concerne les fonctionnalités prévues par le cahier des charges, peu
de modifications ont été effectuées.
En effet, le seul changement concerne la section "Objets du jeu" qui a été renom-
mée en "Améliorations du vaisseau" pour mieux refléter ’évolution du projet.

Projet Blast EPITA
Rapport de projet 17 mai 2019

3 Les fonctionnalités du jeu

Chaque fonctionnalité du projet est détaillée ci-dessous dans leurs sections
respectives. Ces sections correspondent aux catégories de fonctionnalités que
nous avions mentionnées dans le cahier des charges. Pour chaque section, le déve-
loppement de chaque fonctionnalité, ainsi que tous les aspects qui la composent,
seront détaillés. Pour chaque fonctionnalité qui s’y préte, nous préciseront leur
fonctionnement et leurs enjeux techniques.

3.1 Le vaisseau

Le vaisseau est 1’élément qui représente le joueur. Chaque vaisseau dispose
d’un certain nombre de fonctionnalités qui sont détaillées ci-dessous.

3.1.1 Controles

Le vaisseau est un objet dans l’espace que le joueur peut contréler. Une
caméra y est virtuellement attachée, a la troisiéme personne, et permet au joueur
de se voir et ainsi de se déplacer dans le jeu.

Les mouvements de ce dernier ont été configurés dés le début du projet et
ameéliorés par la suite. Le joueur est ainsi capable de controler :

— L’accélération et les mouvements du vaisseau (avec [s][2])

— Le roulis du vaisseau (avec)

— La direction du vaisseau (avec les mouvements de souris)

Un boost est également disponible au joueur et lui permet de multiplier par 10
son accélération et sa vitesse maximale. Pour activer le boost, le joueur doit
maintenir pendant son déplacement.

L’accélération est d’ailleurs progressive : c’est a dire que le joueur mettra un
certain temps & atteindre une vitesse rapide, et encore plus pour atteindre sa
vitesse maximale. Cette vitesse maximale est de 19.6 m/s en mode normal, et
de 196 m/s en mode boost.

Le joueur est aussi capable de regarder ce qu’il se passe autour de lui sans
modifier la direction de son vaisseau : il s’agit du mode « caméra libre ». Pour
passer dans ce mode, il suffit au joueur d’appuyer sur le clic molette avant de
déplacer sa souris.

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.1.2 Mouvements du joueur

Les mouvements ont été compliqués & bien gérer. En effet, le jeu se déroule

dans l’espace, c’est-a-dire un environnement sans gravité, et donc sans notion
de haut et de bas. Cela représente une vraie problématique car il ne faut pas
que le joueur se perde.
Il faut aussi que les controles se fassent relativement au joueur et non au monde,
ce qui a posé beaucoup de problémes au début car la caméra et le vaisseau ne
réagissaient pas de la maniére souhaitée lorsque ce dernier était incliné et a
nécessité beaucoup de recherches pour les régler.

Les solutions ont cependant été assez simples, malgré que le tout ait été
résolu assez tardivement dans le développement du jeu. Pour garder l'exemple
de la caméra, nous utilisons la fonction Transform.LookAt () E] pour que la ca-
méra regarde le vaisseau du joueur. Lorsque le joueur était incliné ou était
a lenvers, la cameéra restait orientée de la méme fagon et les controles deve-
naient trés confus. Nous avons appris par la suite que cette fonction dispose
d’un paramétre permettant de choisir le vecteur qui représente le haut, par dé-
faut fixé a Vector3.up[ﬂ il a donc suffit d’utiliser le vecteur haut relatif au
joueur (player.transform.up) pour régler ce probléme.

De plus, des effets de trainées ont été ajoutés a l'arriére du vaisseau, sur
ses réacteur, pour donner au joueur une réelle impression de mouvement, que le
vide de ’espace seul ne permet pas.

Des effets similaires ont été ajoutés aux projectiles pour leur donner aussi un ef-

fet de vitesse, mais aussi de puissance. Ces deux trainées utilisent les composants
Trail Emitters de Unity.

4. Transform.LookAt() :
https://docs.unity3d.com/ScriptReference/Transform.LookAt.html

5. Vector3.up : Correspond au vecteur (0, 1, 0).
Plus d’infos sur https://docs.unity3d.com/ScriptReference/Vector3-up.html

https://docs.unity3d.com/ScriptReference/Transform.LookAt.html
https://docs.unity3d.com/ScriptReference/Vector3-up.html

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.1.3 Meécaniques de tir

Des mécaniques de base pour le combat ont ensuite été ajoutées par Ma-
thieu. Un premier canon a été ajouté, puis un second, tous deux capables de
tirer sur demande des projectiles, a I’aide du clic gauche et droit pour, respec-
tivement, le canon gauche et droit. Ces projectiles tirés iront heurter les objets
qu’ils rencontreront, avant de disparaitre & 'impact. Les collisions sont détectées
a l'aide de la méthode prédéfinie OnCollisionEnter () F_;] et supprime le projec-
tile lorsqu’elle est appelée. Si aucune collision n’est détectée, le projectile est
supprimé au bout d’un certain temps (environ 5 secondes).

La mécanique de tir a ensuite été mise a jour avec la possibilité de charger les
canons avant le tir, et ce de maniére individuelle. Ainsi, maintenir le clic gauche
ou droite démarrera, respectivement, la charge de 'arme gauche ou droite. Ce
chargement est pergu par le joueur a l'aide d’une orbe translucide qui augmente
progressivement de taille au bout du canon. Au bout d’un court instant, des
particules apparaitront en plus pour rendre l'effet plus visible au joueur. On
peut voir 'effet au bout des deux canons du vaisseau sur 'image ci-dessous.

Pour résoudre ensuite un probléme pratique de jouabilité, une aide a la visée
avec un viseur dynamique a été ajouté a l'interface permettant au joueur
d’avoir une plus haute précision dans 'utilisation de ses armes.

6. OnCollisionEnter() :
https://docs.unity3d.com/ScriptReference/Collider.OnCollisionEnter.html

10

https://docs.unity3d.com/ScriptReference/Collider.OnCollisionEnter.html

Projet Blast EPITA
Rapport de projet 17 mai 2019

Le chargement des armes du vaisseau du joueur peut étre utile a ce dernier
puisqu’il a des effets sur les dégats et sur la vitesse des projectiles. Le chargement
devient maximal au bout de 2 secondes, c’est a dire qu’au dela de 2 secondes,
les effets seront les mémes. Le chargement maximal permet, au tir, la propulsion
de projectiles avec les effets suivants qui leur sont appliqués :

— Les projectiles font 3 fois plus de dégats aux ennemis ; et

— Les projectiles se déplacent 2 fois plus rapidement.

3.1.4 Physique des projectiles

Tout d’abord, les tirs n’étaient que de simples cubes sans effets. Puis, nous
avons opté pour des tirs plus graphiques, avec un trail emitter derriére, de la
méme maniére que pour le vaisseau. La vitesse de propulsion des projectiles était
auparavant gérée indépendamment de celle du vaisseau, ce qui causait parfois
le phénoméne absurde que le vaisseau allait plus vite que le projectile qu’il tire
devant lui. Ce probléme a été corrigé en ajoutant la vitesse du vaisseau a la
vitesse de propulsion du projectile.

De plus, I’ajout des tirs chargés a nécessité des améliorations allant de pairs
avec celles-ci. A présent, la masse des tirs est proportionnelle & la puissance de
ceux-ci. Cela peut sembler assez anodin mais toute la physique de Unity se base
sur la masse. Par exemple, un tir d’une masse nulle n’aura aucune conséquence
sur la trajectoire d’un astéroide qui la percute. Par contre, un tir avec une masse
importante aura tendance & repousser 1’astéroide, ou encore a influencer sur sa
vitesse ou son angle de rotation.

Les tirs chargés ont aussi une vitesse plus importante.

11

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.1.5 Améliorations

Cette partie était anciennement dénommeée "les objets" car nous avions en
idée que les objets seraient utilisés pour améliorer le vaisseau. Cependant, nous
avons préféré faire un systéme d’amélioration de vaisseaux plus simple. A aide
des points d’expériences pouvant étre acquis dans les missions, il est désormais
possible "d’acheter" des améliorations. L’amélioration est appliquée au vaisseau
aprés ’échange des points. Les améliorations implémentées concernent 1’accé-
lération du vaisseau, les points de vie du joueur et les dégats qu’infligent les
armes du vaisseau. Chacune d’entre elles dispose de trois niveau d’amélioration
différents.

3.1.6 Interactions entre entités

Au début du projet, nous avions introduit les points de vie pour les vais-
seaux, mais ces points ne pouvaient pas évoluer. Nous avons par la suite ajouté
un nouvel aspect au vaisseau qui le rend destructible. Une collision entre un
objet quelconque et le vaisseau fera baisser son niveau de vie. Cela fonctionne
notamment avec les armes équipées sur les vaisseaux. Il est donc possible de
tuer un autre joueur dans une partie multijoueur & l'aide de ses armes.

Cette fonctionnalité a été étendue & 'aide d’une interface C#m Cette no-
tion, abordée en travaux pratiques & 'EPITA, permet de définir des méthodes
qui sont communes a différents objets. Dans ce cas précis, 'interface C# (nom-
mée ILivingEntities) définit des méthodes communes a toutes les entités "vi-
vantes", c’est-a-dire des objets possédant un niveau de vie qui peut baisser au
cours de la partie jusqu’a zéro, ce qui engendre la mort de ’entité. Les joueurs
sont considérés comme des entités vivantes et implémentent donc cette interface.

7. Interface C# :
https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/
interface

12

https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/interface
https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/interface

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.1.7 Collisions

Initialement, les collision étaient gérées grace a des formes géométriques
simples : un pavé pour les vaisseaux et une sphére pour les astéroides. Cette
technique avait ses avantages, mais aussi beaucoup d’inconvénients. Cela amé-
liorait grandement la vitesse de calcul des collisions bien-siir, mais diminuait
aussi sa précision. On se retrouvait alors avec un vaisseau qui se cognait avec
des astéroides a quelques métres de lui. Sachant que les collisions retirent de la
vie, il était important d’avoir une boite de collision plus précise afin de pouvoir
éviter ces astéroides facilement. De plus, les astéroides n’ont pas une forme to-
talement sphérique et le vaisseau pouvait rentrer dans certaines aspérités de la
surface lorsque les astéroides étaient plus gros que la normale.

C’est pourquoi le projet a subi une refonte totale du systéme de collision.
Celles-ci ne sont maintenant plus gérées par des BoxColliderEl ou des Sphere-
C’olliderﬂ7 mais par des MeshC’ollideﬂ En utilisant les Meshlﬂ (qui étaient
fournies dans les différentes librairies d’ou viennent nos modéles 3D) nous avons

été capable, grace a Unity, d’obtenir une boite de collision complexe que voici :

8. BozxCollider : https://docs.unity3d.com/ScriptReference/BoxCollider.html
9. SphereCollider : https://docs.unity3d.com/ScriptReference/SphereCollider.html
10. MeshCollider : |https://docs.unity3d.com/ScriptReference/MeshCollider.html
11. Un mesh ou maillage est un objet tridimensionnel constitué de sommets, d’arétes et de
faces organisés en polygones sous forme de fil de fer dans une infographie tridimensionnelle. Les
faces se composent généralement de triangles, de quadrilatéres ou d’autres polygones convexes
simples, car cela simplifie le rendu. Les faces peuvent étre combinées pour former des polygones
concaves plus complexes, ou des polygones avec des trous (il s’agit, pour résumer, de I’aspect
physique d’un objet). — https://fr.wikipedia.org/wiki/Mesh_(objet)

13

https://docs.unity3d.com/ScriptReference/BoxCollider.html
https://docs.unity3d.com/ScriptReference/SphereCollider.html
https://docs.unity3d.com/ScriptReference/MeshCollider.html
https://fr.wikipedia.org/wiki/Mesh_(objet)

Projet Blast EPITA
Rapport de projet 17 mai 2019

Cependant, ce MeshCollider ne sera pas capable d’intéragir avec d’autres
MeshCollider. Cela pause un probléme sachant que les astéroides aussi possédent
cette spécificité. Ils faut donc que les collider deviennent C’onveac'El: les Convex
MeshCollider possédent une limite de 255 triangles, ce qui explique la diminution
de la précision de la version finale de la boite de collision du vaisseau (il en va
de méme pour les astéroides). Celle-ci reste tout de méme suffisante pour ce
projet :

12. Convez : |https://docs.unity3d.com/ScriptReference/MeshCollider-convex.html

14

https://docs.unity3d.com/ScriptReference/MeshCollider-convex.html

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.2 Les missions

Afin d’apporter un but au jeu, un systéme de mission a été implémenté.
Il permet au joueur d’avoir une progression et des objectifs & accomplir. Les
missions permettent d’obtenir des points d’expérience permettant entre autre
I’amélioration du vaisseau.

Les missions sont implémentées a 1’aide de classes abstraites[} Cette notion
a également été vue en travaux pratiques & 'EPITA. Ce type de classe permet
de définir une classe partielle, dans ce cas Mission, qui doit étre étendue. Dans
notre cas, cela nous permet de développer différent types de missions, tout
en gardant des propriétés et méthodes communes, ce qui évite de gérer tous
les types manuellement pour faire la méme chose. Tous les types de missions
partagent certaines propriétés, comme le nombre de points d’expérience qu’elles
donnent au joueur quand celui-ci la finit. Les missions disposent toutes de mémes
méthodes comme la méthode Begin() qui correspond au démarrage de la mission.

3.2.1 Mission de livraison

Le premier type de mission implémenté est la mission de livraison. Le joueur
doit se rendre dans une zone pour récupérer un colis et doit 'amener dans
une autre zone. Les positions des zones sont déterminées aléatoirement tout en
restant dans des distances atteignables par le joueur.

3.2.2 Mission de destruction

Le second type de mission implémenté est la mission de destruction. Un
batiment apparait sur la map et le joueur doit s’y rendre afin de détruire le
batiment avant que la tourelle présente au dessus ne le détruise. La position est
déterminée comme celle de la mission de livraison.

Ces deux types de missions utilisent des zones de début et de fin représentées
par des batiments. Ces derniers seront vus plus en détail dans leur partie dédiée.

13. Classes abstraites :
https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/
abstract

15

https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/fr-fr/dotnet/csharp/language-reference/keywords/abstract

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.3 Interfaces

L’interface est gardée volontairement simple pour permettre au joueur de
garder une bonne visibilité dans le jeu. Plusieurs éléments ont étés implémentés
au fur et & mesure de la progression du jeu, c’est pourquoi nous allons les détailler
dans leur ordre chronologique.

3.3.1 La boussole

Pour permettre au joueur de se repérer dans I’espace, une boussole a été
ajoutée a l'interface. Elle se met & jour selon les mouvement et la position du
joueur. La boussole est constituée d’un indicateur qui indique la valeur actuelle
et la boussole en elle-méme en dessous. Il s’agit d’une trés grande image de
prés de 8000 pixels de largeur qui contient toutes les valeurs de 0 a 350. Cette
image est partiellement masquée dans Unity & 1’aide du composant Mask[jz]
et est déplacée en fonction de I'angle du joueur entre un vecteur arbitraire
qui représente le nord (arbitraire car il n’y a pas de nord dans l’espace) et
Porientation du vaisseau. L’image fait une boucle car en arrivant & la toute
droite de celle-ci on retourne au début, c’est-a-dire a gauche. Cette boussole est

utile pour se rendre quelque part sur la carte et sert d’indicateur de direction.

3.3.2 HUD (Head-Up Display)

Afin de pouvoir rajouter des caractéristiques au vaisseau ainsi que d’informer
le joueur de son statut, nous avons ajouté 'affichage d’informations du vaisseau
sur le bord inférieur gauche de ’écran. La santé et la vitesse du vaisseau du
joueur y sont affichés. La vitesse est donnée en métres par seconde, 1 métre
équivalent & une unité dans le monde en 3D.

14. Mask : https://docs.unity3d.com/ScriptReference/UI.Mask.html

16

https://docs.unity3d.com/ScriptReference/UI.Mask.html

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.3.3 Le viseur

Pour résoudre un probléme de difficulté & la visée, nous avons ajouté un
viseur dynamique a l'interface. Ce dernier est affiché quand le vaisseau pointe
en direction d’un objet dans I'espace. Cela est rendu possible grace au tracé de
rayons virtuels avec la méthode Physics.Raycast () IT_El Cette fonction retourne
le point d’impact avec un objet, s’il y en a un. Le point d’impact est ensuite
projeté sur I'interface en deux dimensions, ce qui nous donne la position a jour
du viseur, qui se placera aux coordonnées correspondantes.

Dans le cas ou le rayon virtuel ne rencontre aucun objet, la
fonction retourne faux et le viseur est masqué jusqu’a ce que
le joueur dirige son vaisseau vers un nouvel objet.

3.3.4 Missions et ameéliorations

Pour la deuxiéme soutenance et I'introduction des missions et des améliora-
tions, il a fallu que l'interface soit adaptée a ces nouvelles additions.

m C’est pourquoi l'interface de jeu posséde maintenant deux bou-
tons permettant d’accéder aux deux fenétres Upgrades et Mis-

Upgrades sions, montrées ci-dessous.

Upgrades Missions List

Upgrade cost: XP: 400

: = . o
Acceleration . B 800 EXP Delivery Mission

- Upgrade cost: Xp:r - 400

300 EXP ivery Missi
4 De“"eam'sf'c'"

Damage -
AR

Health [l

Delivery Mission

Sur I'image, on peut voir & gauche la fenétre des upgrades et & droite la
fenétre des missions. Les caractéristiques des missions et des upgrades seront
expliquées dans les sections suivantes.

Nous avons aussi ajouté un menu de pause, accessible en appuyant sur la
touche [@ . Celui-ci permet de mettre le jeu en pause pour le reprendre ensuite,
ou le quitter.

15. Physics.Raycast() : https://docs.unity3d.com/ScriptReference/Physics.Raycast.
html

17

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.3.5 Menu principal

Enfin, I’évolution du projet a aussi nécessité une remise en forme du menu.
Pour la premiére partie de développement, le menu n’était composé que d’un
bouton "Play". Pour la seconde partie, nous avions créé une scéne entiére, se
déroulant dans une station spatiale avec chaque sous-menu qui correspondaient a
un angle de caméra et un endroit de la station différent. Voici & quoi ressemblait
le menu principal :

Pour le menu final, la structure du menu en général est restée la méme
(Singleplayer et Multiplayer), avec quelques ajouts comme un menu d’option
ainsi que la possibilité de choisir un pseudonyme avant de rejoindre une partie
multijoueur. De plus, nous avons ajouté quelques améliorations visuelles. Tout
d’abord, le vaisseau du joueur au premier plan, ainsi qu’une refonte des textures
de la station. Ensuite, nous avons retiré le soleil, et ajoutés des astéroides dans
le fond (les astéroides tournent).

SINGLERPLAYER
MULTIPLAYER

ORPTIONS

18

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.4 Sauvegardes

Avant la deuxiéme soutenance, la gestion des sauvegardes avait été laissée de
c6té par manque de pertinence par rapport a ce que nous avions alors développé.

Depuis, avec I'ajout des missions et des améliorations, la gestion des sauve-
gardes est devenu une fonctionnalité importante a implémenter dans notre jeu
vidéo. Par simplicité, nous avons choisi de gérer les sauvegardes avec des fichiers

JSONIT]

|=| save json E3 IE README md J]

1 {"playerName":"Mati", "playerxp™: playerX™: 0,
"player¥y":U,"playerz" 0, "playerHealth": ,
"addonAcceleration™: 1, "addonDamage™: 1,
"addonHealth™: 1}

Le systéme de sauvegarde permet donc au joueur de sauvegarder son ex-
périence ainsi que les attributs de son vaisseau. Ces attributs sont vastes et
comprennent les améliorations appliquées par le joueur (attributs préfixés par
"addon"), ainsi que :

— le nom du joueur (playerName) ;

— sa position (playerX, playerY, playerZ);

— sa rotation (playerRX, playerRY, playerRZ);

— son niveau de vie (playerHealth) ;

— son niveau d’expérience (playerXp)

A la deuxiéme soutenance, le chargement de la sauvegarde, si elle existe,
était fait automatiquement au lancement d’une partie multijoueur ou solo. La
sauvegarde était manuelle et se faisait en appuyant sur la touche [@ .

Aujourd’hui, la sauvegarde est chargée au lancement du jeu lui-méme, ce qui
permet de charger le nom du joueur et d’éviter de le lui demander & nouveau.
La sauvegarde est encore manuelle et peut se faire a partir du menu de pause,
en plus de la touche attribuée [Q .

Il est toujours possible d’effacer la sauvegarde existante de son ordinateur en
appuyant sur la touche . Alors, au prochain lancement, le jeu se comportera
comme si il était lancée pour la premiére fois, sauf si une autre sauvegarde a été
créée.

16. JSON : https://www. json.org/
https://fr.wikipedia.org/wiki/JavaScript_0bject_Notation

19

https://www.json.org/
https://fr.wikipedia.org/wiki/JavaScript_Object_Notation

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.5 Monde et carte
3.5.1 Génération d’astéroides

Parmi les nombreux scripts que nous avons écrit, il y a le générateur d’as-
téroides. Il constitue la majorité de la création de I’environnement de jeu. A
chaque Updatem ce script va compter le nombre d’astéroides présents autour
du joueur. Si ce nombre est trop faible, il va instancier des astéroides de ma-
niére aléatoire autour de celui-ci (en faisant attention tout de méme & ne pas
instancier un astéroide dans le joueur ou dans un autre astéroide).

Génération d’un astéroide :

La génération définit des caractéristiques aléatoirement, telles que sa position
(tout de méme comprise entre certaines bornes), sa taille (entre 0 et 3), et sa
rotation. L’une des seules caractéristiques qui n’est pas aléatoire est la masse de
lastéroide généré. En effet, celle-ci sera égale a 100 fois sa taille. Cela permet
d’avoir un certain dynamisme/réalisme puisque les objets les plus gros seront
moins influencés physiquement par les tirs des vaisseaux que les petits.

Prévisualisation :

La création de ce script nous a aussi permis de découvrir comment utiliser
les Gizmosﬁ dans les scripts. Ils se sont avérés trés utile afin de visualiser la
zone dans laquelle les astéroides sont générés, et donc quelle zone vérifiera le
nombre d’astéroide. Voici a quoi ressemble la zone :

17. La fonction Update est appelée & chaque image calculée du jeu. Pour plus d’informa-
tions :https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html

18. Les Gizmos sont des outils associés & un objet dans une scéne. Ils permettent un débo-
gage visuel et des outils d’aide dans la prévisualisation de la scéne, comme la grille de la scéne
ou les boites de collision. https://docs.unity3d.com/Manual/GizmosMenu.html

20

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/Manual/GizmosMenu.html

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.5.2 Skybox

La skybo:L'FE] est un élément important pour immerger le joueur dans le monde
fictif de notre jeu vidéo car elle représente le décor. La premiére version avait été
créée a 'aide du logiciel Spacescape@ Il s’agit d’un outil de création de skybox
spatiales avec des étoiles et des nébuleuses. Ce logiciel est complet mais est
difficile & prendre en main. Pour obtenir un bel univers, il faut créer différents
calques, avec par exemple des points pour les étoiles. L’addition de plusieurs
calques donne un résultat plus esthétique.

Lorsque la création de calques est terminée, le logiciel dispose d’une fonction
d’exportation pour des moteurs de jeux vidéos dont Unity. L'importation dans
Unity est ensuite trés simple : 6 images sont créées et il suffit de suivre les
instructions d’Unity.

Voila la skybox que nous avons utilisé jusqu’alors :

19. Une skybox, comme son nom l’indique, représente le ciel. Elle montre a quoi ressemble
le monde au dela de la distance atteignable. Elle donne I’illusion d’un monde plus grand qu’il
n’est réellement. — https://docs.unity3d.com/Manual/class-Skybox.html

20. Spacescape : https://sourceforge.net/projects/spacescape/

21

https://docs.unity3d.com/Manual/class-Skybox.html
https://sourceforge.net/projects/spacescape/

Projet Blast EPITA
Rapport de projet 17 mai 2019

Nous avons finalement décidé de nous tourner vers une autre skyboz, qui était
déja présente dans le pack contenant les astéroides. Celle-ci est plus épurée, plus
lumineuse, et la présence d’un soleil permet de se repérer plus facilement dans

I’espace que précédemment.

Nous avons aussi, suite a se changement de skybox, changé la position et
I’angle de la lumiére directionnelle de la scéne pour pouvoir faire en sorte que
celle-ci provienne du soleil de la skybox et donc que les ombres soient dans le
méme sens que ce soleil.

22

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.5.3 Map

Pour permettre un meilleur repérage du joueur dans l’espace, nous avons
ajouté une vue du dessus. La touche [@ permet de basculer entre deux modes
de vue :

— La vue normale : une vue & la troisiéme personne, derriére le vaisseau.

— La vue "carte" : une vue de loin, au dessus du joueur.

Dans cette vue, les controles du vaisseau sont désactivés et le joueur peut avoir
un apergu de ce qui se trouve autour de lui. Pour permettre une plus grande
flexibilité, le joueur peut, lorsque qu’il en mode de vue d’ensemble, zoomer ou
dézoomer a l'aide de la molette de sa souris.

Vue d’ensemble autour du joueur :

Pour le mode de vue normal, le joueur a la possibilité de faire pivoter la
caméra autour de son vaisseau en conservant sa trajectoire en maintenant la
molette de la souris appuyée, permettant de voir sur les cotés ou a l'arriére du
vaisseau.

23

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.5.4 Les batiments

Mission : Livraison

Ce batiment apparait dés qu’une mission du type "livraison" est acceptée.
Pour commencer la mission, il faut se rapprocher de celui-ci. Une fois fait, un
batiment identique apparait autre part dans l’espace et il faut rapporter le
paquet a sa position. Les batiments disparaissent alors lorsque le joueur s’éloigne

de celui-ci aprés avoir effectué sa mission.

La zone rouge est celle a toucher pour récupérer le paquet

24

Projet Blast EPITA
Rapport de projet 17 mai 2019

Mission : Destruction

Le batiment des missions de destruction est une tour, placée sur un astéroide
avec une tourelle au dessus. Cette tourelle tire automatiquement sur le joueur
dés que celui-ci est & portée de vue. Cette tourelle prend le premier joueur dans
son champ de vision et le verrouille. Dés que celui-ci sort de sa zone de tir, la

tourelle arrétere de tirer (sauf si un autre joueur est dans la zone, au quel cas
elle le verrouillera).

A gauche, la premiére
version du batiment de
destruction. L’astéroide
était beaucoup plus gros,
et possédait plusieurs ba-
timents. En dessous, la
version finale, avec un
astéroide beaucoup plus
petit, un seul batiment
mais toujours avec la
tourelle sur son toit.

25

Projet Blast EPITA
Rapport de projet 17 mai 2019

Mission : Destruction : La tourelle

Le fonctionnement de la tourelle, survolé précédemment, va étre un peu plus
explicité ici.

A son instanciation, la fonction GameObject .FindGameObjectsWithTag ()
va remplir un tableau a une dimension avec tout les objets possédant le tag
"Player", c’est-a-dire tous les joueurs. Ensuite, & chaque Update, le script cal-
culera grace a la fonction Vector3.Distance la distance entre la tourelle et
les joueurs contenus dans le tableau. Si 'un de ces joueurs est a une distance
inférieure a la distance de verrouillage, ce joueur deviendra la "cible" de la tou-
relle. Si la distance qui sépare le joueur et la tourelle finit par étre supérieure,
la tourelle ne ciblera plus personne.

De plus, la tourelle posséde sa propre vitesse de tir. En effet, & chaque Up-
date, un Timer s’incrémentera et lorsqu’il aura dépassé un certain seuil fixé &
Pavance, la tourelle tirera (ce qui réinitialisera le Timer par la méme occasion).

Lors du développement de cette tourelle, les premiers soucis ont étés de
la "maintenir" sur son socle, car elle vise le joueur en utilisant la fonction
Transform.LookAt () et que celle-ci se sert du centre de rotation de 'objet.
Comme la tourelle est plus maintenue d’un coté que de l'autre, celle-ci "flot-
tait" dans les airs. Un autre probléme a été de gérer la rotation de l'astéroide.
Comme la tourelle est posée sur le batiment, lui méme posé sur l'astéroide et
que celui-ci a une rotation, il fallait que la tourelle calcule la différence entre sa
propre rotation et la rotation de son point d’ancrage.

Ce qui est intéressant avec ce script est qu’il est capable de gérer plusieurs
joueurs en méme temps, grace a ce systéme de "file d’attente" ou le premier
joueur a rentrer dans la zone sera le premier attaqué, puis le second, et ainsi de
suite.

21. GameObject.FindGameObjectsWithTag() :
https://docs.unity3d.com/ScriptReference/GameObject.FindGameObjectsWithTag.html

26

https://docs.unity3d.com/ScriptReference/GameObject.FindGameObjectsWithTag.html

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.6 Multijoueur

3.6.1 Le multijoueur en jeu

Upgrades

Le multijoueur permet a plusieurs joueurs de se rejoindre dans une méme
partie. L’implémentation de cette fonctionnalité a été effectuée par Nicolas. Elle
utilise 'outil Photon@ pour permettre la communication entre les joueurs et
faciliter le développement. Photon admet plusieurs avantages, comme sa facilité
d’utilisation, mais également ’aspect cloud. En effet, I’éditeur de ce module
s’occupe lui-méme d’héberger les utilisateurs. Au lieu de fonctionner par partage
d’TP comme dans de nombreux jeux, il suffit ici d’entrer le nom d’une salle pour
rejoindre une partie. Il est possible de créer une salle mais celle-ci sera hébergée
directement chez Photon au lieu d’étre hébergée directement chez le joueur, ce
qui permet une plus grande simplicité pour que plusieurs joueurs se rejoignent :
il n’est par exemple pas nécessaire d’ouvrir des ports ou d’échanger des adresses
IP, ce qui est un avantage pour les utilisateurs non initiés.

Le multijoueur est requis dans le cadre de ce projet et est une partie de
travail non négligeable. Il nous a été recommandé a plusieurs reprises de faire
de cette fonctionnalité une priorité et de tout implémenter autour d’elle pour
ne pas avoir & tout recommencer par la suite. Ces différentes raisons expliquent
pourquoi cette partie a été travaillée dés le début du projet. Le premier ob-
jectif était que deux joueurs puissent se rejoindre dans une méme partie et
puissent évoluer dans le méme monde. Il a donc été nécessaire de faire des dif-
férents éléments qui composent un joueur un prefab, avec a I'intérieur le modéle
3D du joueur, sa caméra, ses scripts et ses effets. Il s’agit, comme son nom
I'indique, d’un élément « préfabriqué ». Cet élément est ajouté & la scéne &

22. Photon : https://www.photonengine.com/
Photon PUN : https://www.photonengine.com/en-US/PUN

27

https://www.photonengine.com/
https://www.photonengine.com/en-US/PUN

Projet Blast EPITA
Rapport de projet 17 mai 2019

chaque fois qu’un joueur rejoint une partie. On dit qu’il est « instancié ». Pho-
ton adapte des fonctions déja existantes de Unity pour qu’elles fonctionnent
dans I'environnement multijoueur. C’est par exemple le cas pour créer une ins-
tance de joueur : la fonction de base est Instantiate()[” et celle de Photon
est PhotonNetwork.Instantiate()@ Ces fonctions prennent en général les
mémes parameétres que celles de base, avec parfois quelques paramétres en plus
liés & la mise en réseau.

Une partie importante dans le développement de cette fonctionnalité est la
résolution de conflits. En effet, il faut s’assurer qu’un joueur ne voit et ne controle
que son vaisseau et pas celui d’'un autre joueur, tout en assurant que le monde
dans lequel ils évoluent est le méme pour chacun d’entre eux. Il faut donc dans
de nombreux scripts, notamment celui qui gére les déplacements du vaisseau,
vérifier que celui-ci est associé au bon joueur avant d’effectuer son code. Dans le
cas contraire, la vérification se faisant en chaque début de script, la suite du code
n’est en général pas effectuée. La caméra a posé le plus de problémes malgré
que la solution soit simple, il fallait seulement la laisser désactivée dans tous
les cas et ’activer uniquement lorsqu’elle appartenait au joueur. La propriété
PhotonView.IsMine s’est avérée trés utile pour les différentes vérification.

Pour que des objets soient transmis a travers le réseau, il faut ajouter des
composants du module Photon appelés Photon View. Il faut ensuite relier a ce
composants les autres composants & synchroniser qui composent 1’objet, tels que
les Rigidbody qui permettent de leur appliquer de la physique. Des Photon View
sont par exemple présents sur le joueur et les projectiles.

Nous avons ensuite ajouté la possibilité de choisir un pseudonyme qui sera
affiché en jeu au dessus de leur vaisseau, comme l'image présentée plus tot
Iillustre.

A chaque ajout de fonctionnalité, il a été nécessaire d’assurer que chacune
d’entre elles étaient compatibles avec le multijoueur. Si ce n’était pas le cas, il
fallait les retravailler. Cela a permis de garder un multijoueur fonctionnel tout
au long du développement.

23. Instantiate() :
https://docs.unity3d.com/ScriptReference/Object.Instantiate.html

24. PhotonNetwork.Instantiate() :
https://doc.photonengine.com/en-us/pun/current/gameplay/instantiation

28

https://docs.unity3d.com/ScriptReference/Object.Instantiate.html
https://doc.photonengine.com/en-us/pun/current/gameplay/instantiation

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.6.2 Intégration avec Discord Rich Presence

Comme de nombreux joueurs de jeux vidéos, et comme beaucoup de nos
camarades a 'EPITA, nous utilisons beaucoup DiscordF_-El et les services que
I’application rassemble. Discord est un logiciel de discussion par Internet. Ce
service est développé a l'origine pour les joueurs et se connecte bien aux jeux
vidéos. Nous avons alors pensé intégrer le service Rich Presence[% de Discord a
notre jeu vidéo. Cela a pour effet d’afficher sur le profil Discord de I'utilisateur
la notification qu’il est en train de jouer a Blast aprés qu’il ait lancé le jeu.

L’information contient un certain nombre d’informations, que nous appelons
le "contexte". Sur les deux images ci-dessous, on peut voir que l'affichage différe
selon si la partie dans le jeu est lancé en mode solo ou multijoueur.

PLAYING A GAME PLAYING A GAME
Blast Project Blast Project

Singleplayer mode : Multiplayer mode
Playing Playing (1 of 10)
00:02 elapsed 00:03 elapsed

Avant, cette notification n’apparaissait qu’une fois que le joueur ait lancé une
partie. Maintenant, cette information apparait dés le lancement du jeu, avec ce
nouveau contexte utilisé pour 'affichage :

PLAYING A GAME
Blast Project

In menu
00:04 elapsed

25. Discord : https://discordapp.com/
26. Discord Rich Presence : https://discordapp.com/rich-presence

29

https://discordapp.com/
https://discordapp.com/rich-presence

Projet Blast EPITA
Rapport de projet 17 mai 2019

3.7 Les Sons

N’ayant pas vraiment de connaissances en matiére de conception sonore, nous
avons pu récupérer des sons sur le site ZapSplatm une bibliothéque gratuite
d’effets sonores libres de droits.

Un pack entier de plusieurs Mégaoctets contenait des sons de moteurs, de tirs
de laser, mais aussi des voix d’une intelligence artificielle pronongant quelques
mots. C’est avec tout cela que nous avons pu rajouter des sons & notre jeu vidéo.

Parmi ces sons, nous en trouvons deux prononcés par une IA :

— "Welcome", prononcé a 'ouverture du jeu.

— "Scan Complete", prononcé quand le joueur réussit a se connecter a Pho-
ton aprés avoir choisi le mode multijoueur et avoir entré son nom (si
besoin).

Nous avons aussi ajouté des effet sonores, par exemple :
— Un bruit de tir laser pour chaque tir effectué par le joueur.
— Un bruit ambiant des moteurs.

Une intégration avec les scripts existant a été faite, permettant par exemple
de faire varier I'intensité du bruit ambiant des moteurs en fonction de la vitesse
du vaisseau du joueur. Cette intégration permet une meilleure immersion du
joueur lors du contréle de son vaisseau. Plus le joueur accélére, et donc plus le
vaisseau va vite, plus le son des moteurs sera audible et aigu.

27. ZapSplat : https://wuw.zapsplat.com/

30

https://www.zapsplat.com/

Projet Blast EPITA
Rapport de projet 17 mai 2019

4 Commentaire sur ’avancement

Téache Soutenance 1 | Soutenance 2 | Soutenance 3
Sauvegardes 20% 50% 100%
Controéles vaisseau 100% 100% 100%
Les objets 33% 5% 100%
Gestion du vaisseau 75% 100% 100%
Gestion des missions 10% 40% 90%
Monde/Carte 40% 90% 100%
Interface 33% 100% 100%
Multijoueur 40% 50% 70%
Site web 50% 100% 100%

Voici le planning des différents avancements prévus des parties du projet en
fonction des soutenances.

Nous sommes plutot satisfaits de notre travail sur ce projet. Nous avons bien
avancé sur toutes les fonctionnalités sur lesquelles nous souhaitions travailler, et
nous avons méme pu développer quelques fonctionnalités supplémentaires.

31

Projet Blast EPITA
Rapport de projet 17 mai 2019

5 Le site web

ADRESSE WEB : https://g00pix.github.io/ProjetBlast

Le site web a été congu simplement pour offrir une vitrine & notre projet.
Il regroupe la présentation du projet, les liens de téléchargement du jeu et des
rapports, ainsi que la présentation des membres du groupes.

5.1 Présentation du site

Dés la page d’accueil, une capture d’écran du jeu permet de le présenter
visuellement. I’image mise en avant (qui illustre aussi la section "Introduction"
de ce rapport) présente trés efficacement les graphismes et 1'univers de notre

jeu.

Cette image marque aussi fortement I’évolution qu’il y a eu depuis la derniére
soutenance, puisqu’elle remplace I'image que nous utilisions précédemment pour
ce rdle :

32

https://g00pix.github.io/ProjetBlast

Projet Blast EPITA
Rapport de projet 17 mai 2019

5.2 Plan du site

Projet Blast Home

Voila le plan de notre site internet, tel que le menu le présente :

— La page d’accueil

— La page de I’évolution du projet
— La page des téléchargements

— La page des fonctionnalités du jeu
— La page de présentation du groupe
— La page de contact

La page d’accueil est la page qui intégre 'image que nous avons présenté
dans la précédente sous-section, ainsi qu'un présentation rapide du projet.

La page qui retrace les évolution majeures du projet permet de mettre en
évidence les difficultés et les moments importants que notre projet ou notre
groupe ont traversés.

La page des téléchargements contient les liens pour télécharger le jeu, ainsi
que les fichiers en rapport avec le projet : notamment le cahier des charges et
les rapports de soutenance.

La page qui présente les fonctionnalités majeures du jeu permet d’offrir au
visiteur un apercu de ce qui est possible de faire dans notre jeu vidéo.

La page de présentation du groupe présente ce dernier, ainsi que chacun de
ses membres. Des liens ont été ajoutés pour contacter les membres individuel-
lement par mail, ou pour accéder a leur profil sur GitHub.

Finalement, la page de contact permet de rédiger puis d’envoyer un mail
collectif & tous les membres du groupe.

33

Projet Blast EPITA
Rapport de projet 17 mai 2019

5.3 Informations techniques

GitHub Pages

Le site internet est hébergé sur GitHub grace & son service GitHub Pages@
et est accessible publiquement a ’adresse web indiquée au début de cette section.
Cette méthode est trés pratique car le code source du site internet est lié a celui
du projet dans le méme repository. Le code source du site est conservé dans une
branche appelée « gh-pages » alors que le code source du jeu vidéo est conservé
dans une autre branche, appelée « master ». Toutes les modifications faites
dans la branche du site internet seront automatiquement répercutées sur le site
lui-méme. Ce déploiement est rapide et facilite grandement la collaboration en
groupe.

GitHub Pages utilise Jekyll@ pour construire les site web que le service hé-
berge. Jekyll est un outil de génération de site internet statique. 11 offre quelques
fonctionnalités pratique au développeur, et nous en avons donc tiré profit.

Pour le moment, le site utilise le framework Bootstmpm pour faciliter le
développement et I'ajout d’éléments esthétiques, sans avoir & perdre beaucoup
de temps sur du code CSS qui n’est pas l'objectif de ce projet. Son utilisation
est simple et bien documentée, il suffit d’ajouter des éléments HTML contenant
les noms de classes correspondant pour que le site prenne forme rapidement.

Grace a Jekyll, le développement du site se fait & ’aide de templates HTML
qui seront remplies par Github Pages a chaque déploiement. Le contenu s’écrit
majoritairement en Markdownlﬂ, un langage de balisage léger, ce qui rend 1’écri-
ture plus simple. Il est possible d’ajouter des petites parties de code HTML dans
les fichiers de contenu pour différencier certaines pages et y ajouter des éléments
plus complexes, qui interagissent avec le framework Bootstrap.

28. GitHub Pages : https://pages.github.com/

29. Jekyll : https://jekyllrb.com/

30. Bootstrap : https://getbootstrap.com/

31. Markdown : https://fr.wikipedia.org/wiki/Markdown

34

https://pages.github.com/
https://jekyllrb.com/
https://getbootstrap.com/
https://fr.wikipedia.org/wiki/Markdown

Projet Blast EPITA
Rapport de projet 17 mai 2019

6 Téléchargement et Installation

6.1 Téléchargement

Le jeu est disponible au téléchargement sur le site web du Projet Blast, dans
la section Téléchargements.

6.2 Installation

Lorsque l'utilisateur clique sur le bouton Télécharger, un fichier du format
.msz’|3_7| est regu. Ce type est le format d’installateur historique du systéme d’ex-
ploitation Microsoft Windows. Sa création est compliquée et nécessite un en-
semble d’outils appelés WiX ToolsetEl La programmation de cet installateur
se fait avec le langage de balisage XML@ Le grand inconvénient de ce type
d’installateur est la complexité en ce qui concerne sa programmation. En effet,
il est nécessaire de lister manuellement chaque fichier ainsi chaque dossier et
sous-dossier. Le choix a été porté sur cette méthode dans le but d’apprendre,
car elle est trés utilisée dans le monde de 'informatique. En effet, méme Micro-
soft I'utilise pour installer ses différents produits comme le pack de bureautique

Office.

Pour installer le jeu, 'utilisateur a uniquement besoin de suivre les étapes
qui lui sont proposées. L’installation démarre alors. Un raccourci est créé sur le
bureau et 'installateur se ferme. L’utilisateur peut alors directement lancer le
jeu.

32. .msti : https://fr.wikipedia.org/wiki/Windows_Installer
33. WiX Toolset : https://wixtoolset.org/
34. XML : https://fr.wikipedia.org/wiki/Extensible_Markup_Language

35

https://fr.wikipedia.org/wiki/Windows_Installer
https://wixtoolset.org/
https://fr.wikipedia.org/wiki/Extensible_Markup_Language

Projet Blast EPITA
Rapport de projet 17 mai 2019

7 Structure du repository

7.1 Structure physique

Comme dans nos rapports de soutenance, voila la représentation schémati-
sée de la structure du repository Git de notre projet. Cette visualisation a été
générée a 'aide de l'outil GourceF’r_g] a partir de l'historique des modification de
notre projet. Chaque branche représente un dossier, chaque élément représente
un fichier et chaque couleur représente un type de fichier.

A la 1™, la structure ressemblait & cela :

Projet Blast

A la 2"de goutenance, elle ressemblait & cela :

Thursday, 25 April, 2019 14:26:21

Projet Blast

35. Gource : https://gource.io/

36

https://gource.io/

Projet Blast EPITA
Rapport de projet 17 mai 2019

Aujourd’hui, voila & quoi ressemble la structure finale de notre projet :

Thursday, 16 May, 2019 19:26:01

Projet Blast

Au bout droit, on trouve la racine du projet. De droite & gauche, on trouve
sur l'arbre :
— Les fichiers de configuration Unity, dont la majorité sont en bleu ciel.
— Au centre, les fichiers du jeu que nous avons développé, y compris scripts
et éléments du jeu.
— A gauche, les grandes branches de la partie haute correspondant aux trois
librairies principales que nous avons utilisé :
— StarSparrow, une bibliothéque de vaisseaux que nous utilisons dans
le jeu.
— Photon, un framework réseau qui nous aide pour 'implémentation du
multijoueur.
— TextMeshPro (une plus petite branche), une librairie qui nous permet
d’améliorer les textes de 'interface.
— Enfin, toujours & gauche, dans la partie basse du schéma, la derniére
grande branche correspond & tous les assets qui ont été nécessaires a la
conception du nouveau menu de notre jeu.

37

Projet Blast EPITA
Rapport de projet 17 mai 2019

7.2 Notre projet sur Github

Le repository, et en particulier GitHub, nous permet aussi de travailler plus
efficacement en groupe sur le projet. Nous avons mis & profit les outils de col-
laboration qui nous sont a notre disposition : a savoir la création d’issues et de
pull requests.

Les issues nous permettent de signaler et de discuter des bugs rencontrés,
ainsi que des futurs fonctionnalités que nous prévoyons d’ajouter a notre jeu.
Elles permettront par la suite lorsque le projet sera disponible au public de
signaler des bugs détectés par les joueurs que nous pourront alors corriger.

Les pull requests sont créées a chaque fois que le développement d’une fonc-
tionnalité majeure est terminé. Cela permet & I’équipe de se mettre au courant
du développement fait par d’autres, ainsi que de donner leur avis sur le travail
qui a été fait.

En quelques chiffres, notre projet sur Github représente :
— Plus de 250 commits et 3 collaborateurs.

— Un repository d’un taille de plus de 150 Mo.

— Plus de 30 pull requests résolues.

— Plus de 10 issues créées.

38

Projet Blast EPITA
Rapport de projet 17 mai 2019

8 Documentation et Informations

8.1 Documentation

Ce projet aura nécessité un gros travail de documentation. Nos sources prin-
cipales ont bien str été la documentation Um’ty@ ainsi que celle de PhotonFEn-
ginelz] (concernant le multijoueur), mais aussi MSDN@ (pour le langage C#
en lui méme) et enfin le forum d’entraide StackOverﬂowlﬂ

8.2 Librairies et Assets

Nous avons utilisé plusieurs librairies dans notre projet. En voici la liste :

— StarSparrow, une librairie gratuite sur le Unity Asset Store. Elle contient
les modéles 3D des vaisseaux, avec des variations de couleurs, les maté-
riaux et les textures de ceux-ci ainsi que les Mesh (trés utiles, surtout
pour les mesh-colliders).

— Photon PUN : 1l s’agit d’'un moteur réseau qui permet de gérer entiére-
ment le multi-joueur.

— TextMeshPro permet d’écrire des textes plus graphiques et plus colorés
que ’éditeur de base de Unity, plutdét pauvre de ce coté-ci.

36. Unity : https://docs.unity3d.com/Manual/index.html
37. Photon PUN :https://doc.photonengine.com/en-us/pun
38. MSDN : https://msdn.microsoft.com/

39. StackOverflow : https://stackoverflow.com/

39

https://docs.unity3d.com/Manual/index.html
https://doc.photonengine.com/en-us/pun
https://msdn.microsoft.com/
https://stackoverflow.com/

Projet Blast EPITA
Rapport de projet 17 mai 2019

9 Expériences personnelles

9.1 NicorLAas FROGER (chef du projet)

J’appréhendais beaucoup la création de ce jeu vidéo. En effet, je voyais cela
comme un projet de trés grande envergure, ce qui était une grande premiére pour
moi. Ce projet s’est avéré difficile mais je le termine avec un sentiment positif.
En effet, cela a été 'occasion pour moi d’en apprendre beaucoup sur le travail
d’équipe car il a fallu s’adapter & de nombreuses reprises. J’ai du apprendre &
travailler avec des personnes que je ne connaissais pas auparavant, et cela ne
m’a pas dérangé. Je suis fier que notre groupe, malgré qu’il ait subit beaucoup
de changements au cours du temps, ait réussi & produire un jeu fonctionnel qui
nous plait. J’ai dit assumer le role de chef de groupe, ce qui était également
une premiére fois pour moi. Cela a été un trés bon exercice car ce n’était pas
toujours évident.

J’ai également pu mettre en ceuvre mes connaissances en programmation que
j'avais pu acquérir par le passé mais aussi avec ’école dans un projet concret
de plus grande envergure que les travaux pratiques hebdomadaires. J’ai égale-
ment pu améliorer ces connaissances car ce projet a nécessité bon nombre de
recherches. Ce projet m’a permis de m’entrainer sur un aspect qui me semble
fondamental dans le développement qui est le passage de 'idée au code. En effet,
durant cette année, les travaux pratiques étaient tous trés dirigés et s’apparen-
taient plus a du remplissage qu’a de la réflexion profonde, ce qui est normal pour
débuter. J’ai donc pu m’entrainer & conceptualiser une idée en quelque chose de
concret, faisable en code.

40

Projet Blast EPITA
Rapport de projet 17 mai 2019

9.2 MATHIEU GUERIN

Dans le rapport de 1°*® soutenance, j’avais exprimé mon intérét pour la
conception d’un jeu vidéo, et c’est toujours vrai. Le projet de S2 était un projet
concret et une opportunité de découvrir les outils 1ié au développement d’un jeu
vidéo et des méthodes de travail qui en découlent, et il I’a été.

J’ai beaucoup appris grace & la conférence Unity donnée par GConfs en
février 2019, et depuis grace a des tutoriels et de la documentation sur Inter-
net. Mes connaissances personnelles avec Git et GitHub, celles acquises en C#
grace & 'EPITA m’auront beaucoup aidé. Quelques expériences personnelles
avec d’autres outils m’auront aidé pour les travaux annexes lié au projet :
L’utilisation et le développement d’AP@ en tout genre pour des implémenta-
tion sur certains de mes projets personnels m’ont permis d’acquérir les compé-
tences nécessaires pour intégrer Discord Rich Presence au projet.

L’utilisation, depuis longtemps, de Bootstrap, GitHub Pages et de Jekyll pour
la conception du site web de notre projet.

De plus, mon expérience a par exemple pu aider par exemple Pierre dans
son apprentissage pour 'utilisation de Git et GitHub.

Ma méthode de développement se base toujours sur mon expérience de jeu
en tant que joueur. Quasiment tout mon travail peut se résumer & ca : améliorer
le jeu d’aprés nos objectifs, tout en améliorant I’expérience du joueur, que ce soit
au niveau du gameplay, ou du ressenti. J'ai ajouté beaucoup de fonctionnalités
sur le ressenti, puisque c’est ce qui m’amuse particuliérement : voir concrétement
le résultat de mes ajouts au projet.

Cette derniére période est arrivée trés vite. Entre les autres projets lié a
I'EPITA, les différentes démarches administratives pour notre scolarité, et bien-
tot les partiels, il a été plutot difficile de tenir le rythme.

Cependant, nous avons tout de méme pu nous accrocher. Nous avons réussi
a finir ce qui avait été démarré et ce qui était toujours en développement lors
de la 27d¢ soutenance. Aujourd’hui, le résultat de notre projet nous satisfait et
est terminé.

40. API : https://fr.wikipedia.org/wiki/Interface_de_programmation

41

https://fr.wikipedia.org/wiki/Interface_de_programmation

Projet Blast EPITA
Rapport de projet 17 mai 2019

9.3 PiIierRE DE LA RUFFIE

Alors, beaucoup de choses a dire sur ce projet. Déja je suis trés fier du travail
que nous avons fourni. Ensuite, je sors de cette derniére partie de développement
avec le sentiment d’avoir accumulé beaucoup de connaissances sur Unity et sur
le C#. Voulant travailler plus tard sur ce moteur de jeu, j’ai tout de suite pris
ce projet trés au sérieux, le voyant aussi comme un moyen d’avoir un apergu
sur ce qui m’attendrais par la suite.

J’ai d’abord eu beaucoup de mal & me lancer dans ce projet de second
semestre, que ce soit dans le groupe Overlord ou dans le groupe Quadro.
Pour le second, il m’a fallut un trés trés long temps d’adaptation. Déja pour me
mettre a niveaux sur Git (aujourd’hui encore je ne maitrise pas l'outil & 100%),
puis au niveau des scripts que mes camarades produisaient et qui m’étaient
difficile de comprendre. Cependant, a travers la distribution des roles que nous
avions effectués, j’ai pu apprendre l'existence de certaines spécificités de Unity
que je ne connaissais pas, comme les MeshCollider ou les Gizmos par exemple.

Je me suis beaucoup amusé a faire le menu, les différentes scénes avec les
mouvements de caméra, et les animations. J’ai aussi découvert ce qu’étais vrai-
ment la génération procédurale sur Unity et en C#. Méme si je n’ai qu’effleuré
la surface de ce sujet avec le générateur d’astéroides, j’ai regardé beaucoup de
tutoriels (notamment celui de BmckeysE[) et j’ai déja beaucoup d’idées pour
d’autres projets sur Unity utilisant ce genre de mécanique.

Je garde tout de méme certains regrets sur ce projet. Par exemple, j’aurais
aimé pouvoir faire de la musique mais je me suis trés vite rendu compte que
cela nécessitais des connaissances plus complexes que ce que j'imaginais. De plus
le logiciel que j’avais prévu pour faire cela s’est avéré incapable d’exporter la
musique dans sa version gratuite. N’ayant pas envie de dépenser d’argent pour
ce projet, j’ai finalement décidé d’abandonner et de me focaliser sur des sons
qui augmenteraient I’immersion.

Cependant, je reste globalement satisfait du travail que nous avons accompli.
Ce projet a vraiment été pour moi une expérience enrichissante et un amusement
certain. J’espére pouvoir a nouveaux un jour refaire ce genre de projets.

41. https://www.youtube.com/watch?v=64NblGkAabk

42

https://www.youtube.com/watch?v=64NblGkAabk

Projet Blast EPITA
Rapport de projet 17 mai 2019

10 Conclusion

Le Projet Blast a connu des débuts difficiles suite au départ de deux membre
du groupe dés le commencement ainsi qu’un début du développement un peu
tardif. Cependant, beaucoup de travail a été effectué et nous sommes aujour-
d’hui trés fiers du résultat. Ce projet aura été pour nous l'occasion d’apprendre
a travailler efficacement en équipe, mais aussi d’améliorer nos connaissances en
programmation et de les utiliser dans la conception d’un projet de grande am-
pleur. Nous avons eu 'occasion d’expérimenter dans le domaine de la conception
de jeu vidéo, un domaine intéressant et ludique, que nous risquons de ne pas
revoir dans la suite de nos études. Ce tout premier projet & EPITA a été une
expérience trés intéressante et enrichissante.

43

	Introduction
	Présentation générale du jeu

	Rappel du cahier des charges
	Modifications de groupe
	Mises à jour de la répartition des tâches
	Mise à jour des fonctionnalités

	Les fonctionnalités du jeu
	Le vaisseau
	Contrôles
	Mouvements du joueur
	Mécaniques de tir
	Physique des projectiles
	Améliorations
	Interactions entre entités
	Collisions

	Les missions
	Mission de livraison
	Mission de destruction

	Interfaces
	La boussole
	HUD (Head-Up Display)
	Le viseur
	Missions et améliorations
	Menu principal

	Sauvegardes
	Monde et carte
	Génération d'astéroïdes
	Skybox
	Map
	Les bâtiments

	Multijoueur
	Le multijoueur en jeu
	Intégration avec Discord Rich Presence

	Les Sons

	Commentaire sur l'avancement
	Le site web
	Présentation du site
	Plan du site
	Informations techniques

	Téléchargement et Installation
	Téléchargement
	Installation

	Structure du repository
	Structure physique
	Notre projet sur Github

	Documentation et Informations
	Documentation
	Librairies et Assets

	Expériences personnelles
	Nicolas FROGER (chef du projet)
	Mathieu GUÉRIN
	Pierre DE LA RUFFIE

	Conclusion

